Reactor $\bar{\nu}_e$ Disappearance at KamLAND
The KamLAND Collaboration

Tohoku University

J.Busenitz, Z.Djurcic, K.McKinny, D-M.Mei, A.Piepke, E.Yakushev
University of Alabama

LBNL/UC Berkeley

G.A.Horton-Smith, R.D.McKeown, J.Ritter, B.Tipton, P.Vogel
California Institute of Technology

C.E.Lane, T.Miletic
Drexel University

P.Gorham, G.Guillian, J.Learned, J.Martic, S.Matsuno, S.Pakvasa
University of Hawaii

S.Dazeley, S.Hatakeyama, M.Murakami, R.C.Svoboda
Louisiana State University

B.D.Dieterle, M.DiMauro
University of New Mexico

J.Detwiler, G.Gratta, K.Ishii, N.Tolich, Y.Uchida
Stanford University

TUNL

M.Batygov, W.Bugg, H.Cohn, Y.Efremenko, Y.Kamyshkov, A.Kozlov, Y.Nakamura
University of Tennessee

Y-F.Wang
IHEP, Beijing
Introduction

Reactor antineutrino experiments: look for a flux deficit at a distance L
Neutrino Oscillations

- Write the weak states ν_1 as a linear combination of mass eigenstates ν_j:

$$\nu_1 = \sum_j U_{\nu 1 j} \nu_j$$

- The ν_j evolve in time as:

$$\nu_j(t) = e^{-i(p \cdot x)} \nu_j(0) \approx e^{-i(m_j^2/2E)L} \nu_j(0)$$

- The probability of detecting flavor ν_l' at distance L is:

$$P(\nu_1 \rightarrow \nu_1, \ldots, L) = | $$

- For 2 flavors (e.g. ν_e, ν_μ) this simplifies:

$$P(\nu_e \rightarrow \nu_e, \nu_\mu, L) = |$$
Matter Effects

\[n = 1 + \frac{2\pi N}{p^2} f_1(0) \]

\[L_0 = \frac{2\pi}{\sqrt{2} G_F N_e} \]

\[P(\nu_e \rightarrow \nu_\mu, L) = \sin^2 2\theta_m \sin^2 \frac{\pi L}{L_m} \]

\[\tan 2\theta_m = \tan 2\theta (1 + \frac{L_{osc}}{L_0} \sec 2\theta) \]

\[L_m \equiv L_{osc} \left[1 + \left(\frac{L_{osc}}{L_0} \right)^2 + 2 \frac{L_{osc}}{L_0} \cos 2\theta \right]^{-1/2} \]
Neutrino Mixing Parameters
Neutrinos On Earth

- Control source and detector

- Sun: \(L_0 \sim 200 \text{ km} \ll R_{\text{sun}} \); Rock: \(L_0 \sim 10^4 \text{ km} > R_{\text{earth}} \)
 Matter effects much less significant

- Neutrino beams: \(E \sim 100 \text{ MeV} \): sensitivity to solar neutrino problem requires \(L \sim 1000 \text{ km} \)

- Reactors: antineutrinos with \(E \sim \text{ MeV} \): \(L \) can be smaller but \(4\pi \) source
Reactor Experiments

Nuclear reactor → \(\bar{\nu}_e \) → Detector

L
Reactors In Japan

55% of total flux from:

Kashiwazaki

Takahama

Ohi

80% of total flux from baselines 140-210 km

KamLAND uses the entire Japanese nuclear power industry as a long-baseline source

KamLAND

Neutrino Flux at KamLAND
$^{235}\text{U Fission}$

$^{235}\text{U} + n \rightarrow X_1 + X_2 + 2n$

92 protons and 142 neutrons are shared between X_1 and X_2

Stable nuclei with A most likely from fission:

94 and 140

98 protons
136 neutrons

On average, 6 n must decay to 6 p to reach stable matter.
Reactor Output

- A typical large power reactor operates at \(\sim 3 \text{ GW}_{th} \)
- At 200 MeV / fission and 6 \(\nu_e \) / fission:

\[
6 \times 10^{20} \bar{\nu}_e \text{ emitted into } 4\pi \text{ each second}
\]
Only ~1.5 ν_e per fission are actually detected.
> 99.9% of ν are produced by fissions in ^{235}U, ^{238}U, ^{239}Pu, ^{241}Pu
Simulation Inputs

- Power: $0.962 	imes 10^{-4}$
- Pressure: 3.42×10^{-3}
- Flow: 1.11×10^{-3}
- Boron ppm: 1.41×10^{-3}
- T inlet: 1.52×10^{-2}
\(\nu_e \) Spectra

- For 235U, 239Pu, and 241Pu, nuebar spectra can be derived from \(\beta^- \) spectrum measurements. This is not easy, since there are many fission branches, each with a variety of \(\beta^- \)-decay branches.

- For 238U, which makes up 11\% of the yield, no spectra are available, so we must rely on calculations, which are accurate to only 10\%.

Previous Results

3 baselines at Goesgen

Bugey3 (short baseline)

a) “first principles” calculation
b) best prediction (uses β-spectra where possible and calculation for U238)
Previous Results

![Graph showing the relationship between Nobs/Nexp and distance to reactor (m). The graph includes data points for various locations such as ILL, Savannah River, Bugey, Rovno, Goesgen, Krasnoyarsk, Palo Verde, and Chooz.]
Previous Results

KamLAND

MSW LMA Region

Distance to Reactor (m)

N_{obs}/N_{exp}
Event Signature

Coincidence signal: detect
- **Prompt**: e^+ energy + annihilation \(\gamma\)
- **Delayed**: n-capture \(\gamma\)

Average \(\Delta t = 210 \mu s\)
The KamLAND Detector

- Chimney
- Calibration Device
- Liquid Scintillator (1 kton)
- Containment Vessel (diam. 18 m)
- LS Balloon (diam. 13 m)
- Photo-Multipliers
- Buffer Oil
- Outer Detector
- Outer Detector PMT
KamLAND Trigger

Coincidence, prescale threshold: 120 PMT's hit
Singles threshold: 200 PMT's hit
Muons: all tubes hit

Calibration triggers

Inner Detector Triggers

Nsum
Nent = 536885
Mean = 245.2
RMS = 140.9

preliminary
Waveform Analysis

Blue: raw data
red: pedestal
green: pedestal subtracted
KamLAND Data

Event Display:
through-going muon
color is pulseheight
all tubes illuminated
KamLAND Data

Stopped muon
KamLAND Data

Cherenkov ring from “edge clipper”
KamLAND Data

Low-energy event

color is time
Calibrations

Radioactive gamma sources inserted in detector to calibrate energy and position reconstruction
Reconstruction Performance

Energy estimation from radioactive source calibrations

$$\sigma = 7.5\% / \sqrt{E (MeV)}$$

$R = 5.0\, m$ radius fiducial volume estimation from spallation neutron uniformity

$E (MeV)$

$\Delta E/E$

Events/Bin

$R = 5.0\, m$

$R/6.5\, m^3$

(b)
Event Selection

- Time correlation: $0.5 \mu s < \Delta t < 660 \mu s$
- Vertex correlation: $\Delta r < 1.6$ m
- Delayed event energy: 1.8 MeV $< E_{\text{del}} < 2.6$ MeV
- Spherical fiducial volume: $R < 5$ m

Total efficiency: $78.3 \pm 1.6 \%$
Residual accidental background: $< 10^{-5}$ / day
Cosmogenic Backgrounds

Muons leave neutrons which can fake the signal
• Veto detector for 2 ms after muons

Muons also create longer lived (> 100 ms) neutron emitters
• Veto 3m cylinder around muon track for 2 s
• For high energy muons (> 3 GeV), veto entire detector for 2 s

Muon track reconstruction reveals the balloon boundary
Cosmogenic Backgrounds

Residual correlated background: 0.0068 ± 0.0059 events/day
Prompt/Delayed Event Energies

Delayed Energy (MeV) vs. Prompt Energy (MeV)

(delayed energy window)

Jason Detwiler SSI 2003
Livetime: 145.1 days (162 ton·yrs)
Expected signal (no osc.): 86.8 ± 5.6 events
Systematic Uncertainties

Estimated Contributions to the Systematic Uncertainty (%):

<table>
<thead>
<tr>
<th>Component</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Scintillator Mass</td>
<td>2.13</td>
</tr>
<tr>
<td>Fiducial mass ratio</td>
<td>4.06</td>
</tr>
<tr>
<td>Energy threshold</td>
<td>2.13</td>
</tr>
<tr>
<td>Efficiency of cuts</td>
<td>2.06</td>
</tr>
<tr>
<td>Live time</td>
<td>0.07</td>
</tr>
<tr>
<td>Reactor power</td>
<td>2.05</td>
</tr>
<tr>
<td>Fuel composition</td>
<td>1.0</td>
</tr>
<tr>
<td>Time lag</td>
<td>0.28</td>
</tr>
<tr>
<td>Antineutrino spectra</td>
<td>2.48</td>
</tr>
<tr>
<td>$\bar{\nu}_e p$ cross section</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Total systematic error 6.42%
Expected $86.8 \pm 5.6 (0.94 \pm 0.85 \text{ bg})$, observed 54
Event Spectrum

2.6 MeV (analysis threshold)

KamLAND data
- no oscillation
- best-fit oscillation

$\sin^2 2\theta = 1.0$
$\Delta m^2 = 6.9 \times 10^{-5} \text{eV}^2$

- geo neutrinos
- accidentals

Prompt Event Energy (MeV)
Fit to Oscillation Parameters

All contours at 95% CL

Backgrounds fixed but geoneutrino signal floated for fit

Best fit parameters:
\[\Delta m^2 = 6.9 \times 10^{-5} \text{ eV}^2 \]
\[\sin^2 2\theta = 1.0 \]
Physics Interpretation

• KamLAND observed, for the first time, antineutrino disappearance at \(> 4\sigma \)

• Interpreted in terms of neutrino oscillations and assuming CPT invariance, this result

 – excludes all solar neutrino oscillation solutions except LMA

 – is in perfect agreement with LMA
Future Prospects

• Livetime has increased by a factor of ~2 since our first publication

• 50% reduction of flux in 2003 will allow for on-off analysis

• With any luck, KamLAND may observe spectral distortions, truly verifying neutrino oscillations

• Other physics results to come soon, including solar ν_e, geonuetrinos, neutron production...