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Abstract

A measurement of neutrino oscillation based on a 599 ton-year exposure of the

Kamioka Liquid-scintillator Anti-Neutrino Detector (KamLAND) is presented. In

the absence of oscillation, we expect 310.0±23.1 reactor electron-antineutrinos (νe’s)

with energies E > 3.4 MeV, and an additional 13.2 ± 5.9 background events. Only

226 events were detected, corresponding to νe disappearance at the 99.96% CL. In-

terpreted in terms of two flavor neutrino oscillations ν̄e ↔ ν̄x, the best fit to the

KamLAND data gives a mass-squared difference ∆m2 = 8.05+0.95
−0.72 × 10−5 eV2 and a

mixing angle sin2 2θ = 0.68+0.20
−0.22. These values are in excellent agreement with the

Large Mixing Angle solution to the “solar neutrino problem”. The distortion of the

measured spectral shape is consistent with neutrino oscillation, and disagrees with

the un-oscillated spectral shape at 98.2% significance. Assuming CPT invariance, a

combined analysis of solar neutrino results and the KamLAND spectrum yields the

precision measurement ∆m2 = 7.86+0.75
−0.59 × 10−5 eV2, tan2 θ = 0.391+0.036

−0.034.
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Chapter 1

Introduction

1.1 The Solar Neutrino Problem

In 1962 Raymond Davis Jr. of Brookhaven National Laboratory set out to build a

device capable of detecting neutrinos from the sun. His aim was to investigate the

Standard Solar Model (SSM) [1], the theory of the complex chain of nuclear reactions

that fuel the sun and keep it shining. In 1968 when Davis’ first results were released

[2], the SSM was a relatively flexible theory with poorly constrained parameters due

to sparse solar experimental data with large uncertainties [3]. However, the SSM gave

a testable prediction for the number of neutrinos that Davis’ experiment would detect

above the background.

Davis’ experiment was located 1.5 km underground in the Homestake mine in

South Dakota, and consisted of a large tank filled with 100,000 gallons of a chlorine-

based cleaning fluid, C2Cl4. Neutrinos interacting with a 37Cl atom in the fluid would

create radioactive 37Ar (threshold = 814 keV), the production rates of which were

measured monthly by monitoring its activity. The incident neutrino flux inferred

from the measurements marked the first detection of neutrinos from the sun, or any

other non-terrestrial source, an achievement for which Davis shared the 2002 Nobel

Prize in Physics. However, it was the exact value of the neutrino flux detected that

set off a flurry of activity in astro-particle physics that has since captured many of

the best minds and hands in the field, pushing technological limits and generating

1



2 CHAPTER 1. INTRODUCTION

new ideas and constraints for theories beyond the Standard Model of particle physics

[4]: Homestake only detected about one third of the neutrinos the SSM predicted it

would.

In these early years, there was a great deal of skepticism about the discrepancy

between Homestake and the SSM, which came to be known as the Solar Neutrino

Problem [5, 6]. In particular, large uncertainties in the SSM prevented many scien-

tists from taking these initial results seriously [7]. But as the years progressed, the

SSM was dramatically refined, and the statistical and systematic uncertainties in the

Homestake measurement were reduced, and to this day the deficit still remains [8].

Gradually it became apparent that the solution to the solar neutrino problem

might lie in the properties of the neutrino itself. Among other things, it was real-

ized that the neutrino may exist in a mixed state, analogous to the K0 system, if

it has a small but finite mass [10]. Over astronomical distances or through inter-

actions with dense matter, the mixing could result in the “disappearance” of the

original neutrino flavor produced by the sun and the “appearance” of other flavors

[11]. Such disappearance of electron neutrinos could explain the flux deficit observed

in the Homestake experiment. Although the Standard Model assumes that the neu-

trino is massless, grand unified theories naturally accommodate small neutrino masses

through the “seesaw mechanism” [9], described in Section 1.2. With the success of

big-bang nucleosynthesis [12], the discovery of the cosmic microwave background [13],

and later the growing evidence for dark matter [4], it became apparent that neutrino

mass also has implications for early cosmology and the matter balance of the uni-

verse. This prompted an all-out experimental assault on neutrino mass, which in the

last few years has crescendoed into a golden age for experimental neutrino physics,

in which the subject of this thesis, the KamLAND experiment, has played a seminal

role.

1.2 Neutrino Mass

The Standard Model contains 3 left-handed neutrinos νlL (l = e, µ, τ), with no mass

term. To generalize the theory, we add new fields νiR corresponding to possibly heavy
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right-handed neutrinos. In a CPT-invariant gauge field theory containing such fields,

the mass term in the Lagrangian can appear in one of two forms, Dirac or Majorana.

The former may be written as

−LD = νiRmD
il νlL + h.c., (1.1)

analogous to the mass terms of the other Standard Model (Dirac) leptons. LD con-

serves total lepton number but not necessarily individual lepton number, depending

on whether mD has finite off-diagonal terms. The Majorana mass term has the form

−LM =
1

2
(νc

kLmM
klLνlL + h.c.) +

1

2
(νc

iRmM
ijRνjR + h.c.), (1.2)

where νc denotes the charge-conjugate of ν. LM allows transitions ν ↔ ν, as well as

ν-ν (or ν-ν) creation and annihilation. Total lepton number changes by two units in

these interactions. LM is allowed only if neutrinos have no additive conserved charges,

as is the case for electrically charged leptons and quarks. The possibility of Majorana

neutrinos has motivated searches for total lepton number violating processes, such as

neutrinoless double-β decay [14].

The most general Lagrangian includes both Dirac and Majorana mass terms,

which may be written as

−LM − LD =
1

2
νcMν + h.c., (1.3)

where ν =

(
νL

νc
R

)
, and M =

(
mM

L (mD)T

mD mM
R

)
(the flavor indices will be suppressed

for the remainder of this section). The relative scales of mD, mM
L , and mM

R are

unknown. However, the most phenomenologically tantalizing situation is the case

where the scale of mD is roughly the same order as the other Standard Model lepton

masses, mM
L is zero or is negligibly small, and mM

R is at a scale much larger than mD,

corresponding to the scale of new physics. In this case, diagonalization of M leads to
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two classes of eigenvectors, three of the form

ν1 ≈ (νL − νc
L) +

mD

mM
R

(νR − νc
R) (1.4)

with eigenmasses m1 ≈ (mD)2

mM
R

, and the rest with eigenmasses m2 ≈ mM
R , with the

form

ν2 ≈ (νR + νc
R) +

mD

mM
R

(νL + νc
L). (1.5)

The ν1 correspond to the three Standard Model neutrinos. Their left-handedness

derives from the suppression of the right-handed components by the term mD

mM
R

. Their

lightness falls naturally from the approximate relation m1m
M
R ≈ (mD)2: ratcheting

up mM
R naturally drives m1 down, a behavior for which this relationship has come to

be referred to as the “seesaw mechanism”. The effective mass term for the ν1 has the

form of LM .

Another phenomenologically viable situation occurs when mM
R is similar to or be-

low the electroweak scale, in which case there may be more than three light neutrinos

with Majorana mass terms. However, measurements of the invisible width of the Z

boson by the LEP experiments have determined that exactly three light neutrinos

participate in the weak interactions [4], so any additional light neutrinos must be

“sterile”, i.e. have no weak couplings. Finally, if mM
R = 0, there are only three neu-

trinos, all with Dirac mass terms. For the cases of both sterile and Dirac neutrinos,

the lightness of the Standard Model neutrinos, some 5 or more orders of magnitude

smaller than all other known leptons, has no natural explanation in terms of new,

high energy physical scales.

1.3 Neutrino Oscillation

Neutrinos come in three flavors, electron-, mu-, and tau-neutrinos (νe, νµ, and ντ ).

Neutrino oscillation is a flavor transformation, in which a νe, for example, may be

converted into a νµ or a ντ . Thus an experiment measuring a flux of νe’s may find that

some of them have “disappeared” on their journey to the detector, having oscillated
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into undetected flavors. Note that neutrino oscillation does not conserve individual

lepton number, while total lepton number is still conserved.

Neutrino oscillation can only occur if neutrinos have mass. Neutrinos are produced

and detected in weak interactions, which couple to the weak eigenstates νl, where

l = e, µ, τ . For massive neutrinos, the weak eigenstates may be expressed as a linear

combination of three mass eigenstates νi, i = 1, 2, 3, with mass mi:

νl =
∑

i

Uliνi. (1.6)

U is a 3× 3 unitary mixing matrix and is analogous to the CKM matrix in the quark

sector.

As an ultra-relativistic neutrino propagates through vacuum with energy E, the

phase of each mass eigenstate will change at different rates according to the Schrodinger

equation,

ν(L) =
∑

i

Ulie
−i

m2
i L

2E νi, (1.7)

where L = 0 corresponds to the emission of the neutrino in weak eigenstate νl. At

distances L > 0 the varying phases of the different mass eigenstates will rotate the

neutrino into an admixture of weak eigenstates. The probability of detecting flavor

νl′ is found to vary with L as

Pνl→νl′ =
∑
i,j

UliU
∗
l′iU

∗
ljUl′je

−i
∆m2

ijL

2E , (1.8)

where ∆m2
ij = m2

i −m2
j . Note that Pνl→νl′ 6=l

= 0 if all of the mi are zero or equal, or

if U = 1.

There are several subtleties in the derivation of Equation 1.8, particularly in the

assumptions of the ultra-relativistic limit and the coherence of Equation 1.6. However,

these subtleties are irrelevant for the experiment presented in this thesis, as well as

for the experiments discussed in Section 1.5. In-depth formulations of the oscillation

probability function starting from a wave-packet description of the neutrino state may

be found in [15].
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In order to get a feel for Equation 1.8, consider for the moment only two neutrino

flavors, νe and, say, νx. In this case, U is a 2× 2 unitary matrix and is parameterized

by a single mixing angle θ, the angle in eigenspace between νe and ν1:

U =

(
cos θ sin θ

− sin θ cos θ

)
. (1.9)

Examining Equation 1.7, we see that the relative phase of the two mass eigenstates

changes by 2π over a distance

Losc =
4πE

∆m2
. (1.10)

In terms of the two parameters θ and Losc, the probability for a neutrino emitted as

νe to be detected as νe is then found from Equation 1.8 to be

Pνe→νe = 1− sin2 2θ sin2

(
πL

Losc

)
. (1.11)

This is an oscillating function of L with period 2Losc and amplitude determined by

the size of the mixing angle θ. As will be shown later, this two-flavor approximation

adequately describes the disappearance of electron-neutrinos and antineutrinos when

the baseline L is very large.

1.4 Matter Effects

Equation 1.11 describes two-flavor neutrino oscillations in vacuum. The situation

becomes slightly more complicated for neutrinos propagating through matter. As

first recognized by Wolfenstein[16], Mikheyev, and Smirnov[17], while all three weak

states participate in neutral-current interactions with normal matter, only electron

neutrinos have additional charge-current interactions with the electrons in the ma-

terial being traversed. This modifies the phase of the νe-component relative to the

other components by 2π over a distance L0 given by

L0 =
2π√

2GF Ne

, (1.12)
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where GF is the Fermi constant, and Ne is the number density of electrons in the

material. This phenomenon, called the MSW effect after the three authors listed

above, alters the two flavor oscillation probability (Equation 1.11) as follows:

Pνe→νe = 1− sin2 (2θm) sin2

(
πL

Lm

)
(1.13)

tan 2θm ≡ tan 2θ

(
1 +

Losc

L0

sec 2θ

)
(1.14)

Lm ≡ Losc

[
1 + 2 cos 2θ

Losc

L0

+

(
Losc

L0

)2
]− 1

2

(1.15)

Note that L0 appears in the equations defining θm and Lm only in the fraction Losc/L0.

In the low-density limit, L0 → ∞, and θm and Lm approach the vacuum oscillation

values.

1.5 Neutrino Oscillation Experiments 1

1.5.1 Solar Neutrinos

The largest and oldest body of evidence for neutrino oscillation comes from solar neu-

trino experiments like Davis’ Homestake experiment described in Section 1.1. Three

experiments, GALLEX [19], GNO [20], and SAGE [21], detected solar neutrinos using

gallium via the interaction 71Ga +νe →71Ge +e− (threshold = 233 keV). With their

lower threshold, the gallium experiments sample more of the solar neutrino spectrum,

illustrated in Figure 1.1 [22], and in particular the lower energy pp neutrinos emitted

by the reaction 4p → 4He + 2e+ + 2νe that is responsible for the majority of the

energy production of the sun. As in the case of Homestake, the gallium experiments

determined the number of incident neutrinos by measuring the radioactivity of the

unstable 71Ge daughter nuclei. Once again a deficit relative to the SSM was detected,

although the gallium experiments saw slightly more than half of the expected number

1For a recent review of experimental progress in neutrino oscillation physics and massive neutrino
physics in general, see [18] and [14].
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Figure 1.1: Solar neutrino energy spectrum predicted by the SSM. The uncertainties
in the fluxes from the various reactions are noted. The thresholds for the different
classes of solar neutrino experiments are shown at the top of the figure. [22]

of neutrinos, while Homestake saw roughly one third. A comparison of the measured

ratios to SSM predictions is shown in Figure 1.2 [23].

The other three experiments with published results on solar neutrinos, Kamiokande

[24], its successor Super-Kamiokande [25], and SNO [26], detect solar neutrinos with a

different technique, utilizing Cherenkov emission in large detectors filled with water.

This technique gives a directional, real-time measurement of the differential neutrino

flux. Kamiokande and Super-Kamiokande, detectors near Kamioka, Japan, consist of

large caverns lined with photomultiplier tubes and filled with 5 and 50 kton, respec-

tively, of ultra-pure water. These experiments detect the Cherenkov emission of the

scattered electron in the interaction ν + e− → ν + e−. The analysis thresholds for the

experiments were 7 and 5 MeV, respectively. While all three neutrino flavors partici-

pate in this interaction, the cross-section for νe is roughly 6 times larger than that for

νµ and ντ . The detected correlation between the direction of the ν signal and that of
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Figure 1.2: Comparison of measured solar neutrino rates to SSM predictions. [23]

the sun by Kamiokande-II [27] marked the first direct evidence that the sun indeed

emits the neutrinos detected in solar neutrino experiments. Both of the Kamioka

experiments detect roughly half of the SSM prediction, as shown in Figure 1.2. Nei-

ther experiment observes a significant day-night asymmetry in the flux, implying that

matter effects for neutrinos passing through the earth on their way to the detector at

night do not alter significantly the oscillation probability. The Kamioka experiments

also do not observe a significant energy dependence of the suppression of the solar

neutrino flux relative to SSM predictions.

SNO, located deep underground in Sudbury, Canada, detects the same electron-

scattering (ES) interaction as the Kamioka experiments using 1 kton of heavy water

suspended in a spherical acrylic vessel lined with photomultiplier tubes. The presence

of deuteron (d) allows for the detection of neutrinos using two additional interactions:

the charge-current (CC) interaction νe +d → p+p+e−, and the neutral-current (NC)

interaction ν + d → p + n + ν. The neutron in the final state of the NC interaction

is detected via the 6.25 MeV γ released when the neutron is captured by another
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deuterium atom. During a second phase of the experiment, two tons of salt (NaCl)

were mixed in with the heavy water. Cl has a larger neutron capture cross-section,

and emits a higher-energy γ, at 8.6 MeV; the combination of these two factors greatly

enhances the neutron detection efficiency. Since all three neutrino flavors participate

in the NC interaction equally, its measurement by SNO represented the first flavor-

independent detection of solar neutrinos, and for the first time experiment and theory

were in beautiful agreement (see the right-most bar in Figure 1.2). Meanwhile, the CC

and ES interactions still showed the suppression observed by all νe-dominant detection

channels. As in the Kamioka experiments, no significant day-night asymmetry or

spectral distortion was observed.

To interpret these experimental results in terms of neutrino oscillations, it must be

kept in mind that the density at the center of the sun where most of the neutrinos are

created is very high, with L0 ≈ 200 km. Except for very small values of ∆m2, matter

effects are so significant that, after the neutrinos emerge from the sun, subsequent

vacuum oscillations do not alter the distribution between the three flavors appreciably.

The complicated relationships between the matter and vacuum oscillation parameters

expressed in Equations 1.14 and 1.15 result in non-trivial regions of oscillation pa-

rameter values that accommodate a particular experiment. Hence solar experiments

individually allow values of tan2 θ and ∆m2 over many orders of magnitude, gener-

ating the complicated allowed regions shown in Figure 1.3 [28]. This figure does not

include the results from the salt phase of SNO. The overlap of the allowed regions

traditionally yielded 4 distinct oscillation “solutions”. The solution at the lowest val-

ues of ∆m2 corresponds to vacuum oscillation, and does not require any significant

flavor transformation due to the MSW effect. The other three solutions do, one at

∆m2 ≈ 10−5 eV2 with a small mixing angle (SMA), one at about the same value of

∆m2 but with a large mixing angle (LMA), and one at lower values of ∆m2 ≈ 10−7

called simply “LOW”. Adding the SNO salt result gives the overlap shown in Fig-

ure 1.4 [26], leaving only the LMA solution, centered at ∆m2
sol = 6.5× 10−5 eV2 and

tan2 θsol = 0.40.
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Figure 1.3: Allowed regions for solar neutrino mixing parameters prior to the SNO
salt-phase results, divided according to experimental category. The red patch corre-
sponds to the LMA MSW solution. [28]
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Figure 1.4: Allowed region for neutrino mixing parameters including all experimental
solar neutrino results to date. This region corresponds to the LMA MSW solution
shown as the red patch in Figure 1.3. The best-fit point is at ∆m2

sol = 6.5 × 10−5

eV2, tan2 θsol = 0.40. [26].

1.5.2 Atmospheric Neutrinos

While the results of the seven solar neutrino experiments discussed in Section 1.5.1

are described elegantly by neutrino oscillation, the first clear evidence of the phe-

nomenon in a single experiment came from measurements of atmospheric neutrinos.

Atmospheric neutrinos are produced in the decay chain of charged pions generated

in collisions of cosmic rays with the earth’s upper atmosphere. The pions decay via

π± → µ± + νµ; the daughter muons decay via µ± → e± + νe + νµ. Hence one expects

roughly two νµ’s for every νe, a phenomenology that has been verified by detailed

cosmic ray Monte Carlo simulations.

Measurements of the ratio of νµ to νe in the atmospheric flux were made by the

water Cherenkov detectors Kamiokande [29] and IMB [30], for which atmospheric

neutrinos created backgrounds to nucleon decay searches. These two experiments

found roughly the same number of νµ as νe, a result that was initially considered to

be an anomaly [31]. The Soudan experiment later also reported a νµ-to-νe ratio of
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Figure 1.5: Zenith angle distribution of atmospheric neutrino candidates in Super-
Kamiokande (data points). The Monte Carlo no-oscillation expectation is shown as
the hatched boxes; the solid line shows the best-fit oscillation solution. [33]

about 1 using a different experimental technique [32].

The drastically larger exposure of the Super-Kamiokande experiment allowed for

a high-statistics measurement of the zenith angle dependence of the atmospheric νµ

and νe fluxes [33]. The distribution for νe agrees reasonably well with Monte Carlo

calculations, but the upward νµ flux, which travels an extra distance of the earth’s

diameter relative to the downward flux, exhibits the pronounced deficit shown in

Figure 1.5. The deficit and its variation with zenith angle is explained beautifully by

νµ-ντ oscillations, the case for which has only strengthened with updated results [34].

The confidence levels in ∆m2-sin2 2θ parameter space for the neutrino oscillation

fit to the Super-Kamiokande data is shown in Figure 1.6. The best fit point is at

∆m2
atm = 2.4× 10−3 eV2, sin2 2θatm = 1.0.
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Figure 1.6: Inclusion region for atmospheric neutrino oscillation. The best fit point
is at ∆m2

atm = 2.4× 10−3 eV2, sin2 2θatm = 1.0. [34]

1.5.3 Reactor Antineutrinos 1

Reactor νe disappearance experiments provide a complementary experimental pro-

gram to the solar and atmospheric neutrino experiments described in Sections 1.5.1

and 1.5.2. First, these are “laboratory-style” experiments, in which one is in control

of both the source and the detector: reactors can be turned on and off, they have

been simulated in detail, and calculations of their νe emission can been accurately

cross-checked with high-statistics measurements (see Chapter 7). Second, for ∆m2
sol,

matter effects in rock are negligible for the few-MeV neutrinos emitted by reactors

(L0 ≈ 104 km), simplifying the physics involved to mere vacuum oscillations. In

addition, while solar experiments detect neutrinos, reactor-based experiments detect

antineutrinos, typically via observation in scintillator of the inverse β interaction. The

different detection techniques required for these particles decouples the systematics

between the two experimental classes entirely.

Reactor νe experiments with source-detector distances of up to ∼1 km have been

performed prior to KamLAND with no significant disappearance detected. In this

1For an in-depth review of reactor neutrino physics prior to KamLAND, see [35].



1.5. NEUTRINO OSCILLATION EXPERIMENTS 15

light, early experiments at distances ≤ 100 m performed at Grenoble [36], Goesgen

[37], Rovno [38], Krasnoyarsk [39], Bugey [40], and Savannah River [41] may be viewed

as consistency checks that the reactor νe signal can indeed be calculated accurately.

Reactor spectrum models have been compared in detail in the high-statistics multiple

baseline experiment Bugey 3, in which the overall spectral uncertainty was limited

to 1.4% [42]. The latest generation of experiments at distances of 1 km, Palo Verde

[43, 44] and CHOOZ [45], searched for νe disappearance for ∆m2 ≈ ∆m2
atm. These

experiments achieved systematic errors on the order of a few percent. The lack

of oscillation signal in these experiments indicate that atmospheric oscillations are

primarily due to νµ ↔ ντ mixing.

Testing solar oscillation parameters with a reactor-based experiment requires base-

lines at or exceeding ∼100 km. However, since reactors emit neutrinos isotropically,

the signal decreases inversely with the square of the distance between the reactor

and the detector. Maintaining a measurable flux of neutrinos in such a long-baseline

experiment requires either a very large detector, a very large reactor, or both.

1.5.4 LSND

One last experiment must be mentioned in any discussion of neutrino oscillation,

the Los Alamos Liquid Scintillator Neutrino Detector (LSND) [46]. This was an

accelerator-based experiment, in which the neutrino source was the beam dump of

an 800 MeV proton beam. Such a beam creates copious amount of charged pions, of

which there are 8 times as many π+ as π−. Only about 5% of the π− decay in flight;

they are highly absorbed due to their large capture probability on nuclei. Moreover,

of the µ− that are produced by π− decays, roughly 90% get captured via reactions

of the form N + µ− →12 N′, and no neutrinos are emitted. Hence the predominant

source of neutrinos is the decay of the π+, which yields νµ, νµ, and νe (the latter two

are emitted in the decay of the daughter µ+). 30 m from the beam stop, a 160 ton

liquid scintillator detector searched for the appearance of νe via inverse β-decay on

protons. A significant excess of νe’s above backgrounds was indeed detected. The

spectrum of the events is plotted in Figure 1.7 [46], along with the contributions from
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Figure 1.7: Energy spectrum of νe candidates in LSND. The lower histogram shows
the expected background distribution. The middle histogram shows the contributions
from νe contamination in the beam. The upper histogram gives the best-fit oscillation
expectation. [46]

backgrounds (lower histogram) and νe contamination in the beam (middle histogram).

The best-fit oscillation expectation is shown in the upper histogram. Figure 1.8 [48]

shows the confidence levels for the mixing parameters derived from the oscillation fit

to the LSND data, allowing values of ∆m2
LSND in the range 0.1 - 10 eV2.

A similar experiment at a shorter baseline, KARMEN [47], detected no νe appear-

ance; its contours exclude much of the LSND solution, but do not have the sensitivity

to fully contradict the LSND results. The Bugey reactor experiment also limits the

LSND allowed region to smaller values of sin2 2θ. The LSND result has yet to be

confirmed by an independent experiment. A new accelerator-based νe-appearance

experiment, MiniBooNE [48], is currently underway and taking data. With projected

sensitivity covering the entire LSND allowed region (see Figure 1.8), MiniBooNE is

poised to either verify or reject, once and for all, the LSND result.

If the LSND result is indeed verified by MiniBooNE, the interpretation in terms

of neutrino mixing becomes a little awkward. The three known neutrino flavors can
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Figure 1.8: Inclusion region for neutrino oscillations consistent with the LSND νe

appearance signal, and exclusion regions for the KARMEN and Bugey experiments.
The black lines show MiniBooNE’s expected sensitivity. [48]

give rise to at most two independent mass-differences, so this third region, incom-

patible with both ∆m2
sol and ∆m2

atm, poses somewhat of a theoretical conundrum.

The resolution would require either an additional sterile light neutrino flavor, or the

breaking of CPT invariance, so that ν- and ν̄ masses are not equivalent. Additionally,

∆m2
LSND implies the existence of at least one mass eigenstate with m > 0.4 eV, at

odds with recent studies of the cosmic microwave background [49]. Since the LSND

result has yet to be independently verified, it is common to ignore ∆m2
LSND and its

complicated theoretical implications when analyzing the larger picture of neutrino

oscillation.

1.6 Three-Flavor Oscillations

Until now we have discussed neutrino oscillation results primarily in terms of the

two-flavor description leading to Equation 1.11. With experimental parameters in

hand, we conclude this introduction with a brief argument for the appropriateness of
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this simplification, particularly with regard to the analysis presented in Chapter 8.

When all three known active neutrino flavors are included, U may be parameter-

ized as follows:

U = Usol ×Uatm ×U13 ×UM , (1.16)

Usol =




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1


 Uatm =




1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




U13 =




cos θ13 0 e−iδ sin θ13

0 1 0

−e−iδ sin θ13 0 cos θ13


 UM =




1 0 0

0 e−iα/2 0

0 0 e−i(α/2+β)


 .

(1.17)

The six free parameters comprise three mixing angles, θ12, θ23, and θ13, one CP-

violating phase δ, and two Majorana phases, α and β. With three masses in the

theory there are two independent values of ∆m2
ij. The values of tan2 θsol and ∆m2

sol

measured in solar neutrino experiments correspond to tan2 θ12 and ∆m2
12, respectively.

Likewise, the parameters measured in atmospheric neutrino experiments correspond

to tan2 θ23 and ∆m2
23.

The experimental result that ∆m2
sol ¿ ∆m2

atm implies that L12 À L23 (recall

Equation 1.10). Under this approximation, the oscillation probability (Equation 1.8)

simplifies greatly. In particular, for distances much larger than L23, the probability

for νe to be detected as νe is

Pνe→νe ≈ sin4 θ13 + cos4 θ13

[
1− sin2 2θ12 sin2

(
πL

L12

)]
. (1.18)

Assuming CPT invariance so that Pνe→νe = Pνe→νe , the failure to observe νe dis-

appearance at previous reactor antineutrino experiments with baselines up to 1 km

limits sin2 θ13 to be quite small, less than 0.03 [45], in which case one may further

approximate

Pνe→νe ≈ 1− sin2 2θ12 sin2

(
πL

L12

)
(1.19)
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Note that this is identical to the oscillation probability equation obtained when only

two neutrino species are considered, Equation 1.11. This implies that oscillations of νe

on length scales much larger than L23 are governed by the interference of only two of

the mass eigenstates, validating the analysis of long-baseline νe and νe disappearance

experiments in terms of two flavors only.
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KamLAND

As explained in Section 1.5.3, detecting reactor νe’s at distances long enough to be

sensitive to the LMA MSW solution to the solar neutrino problem requires either

a very large detector or a very powerful reactor. This is illustrated in Figure 2.1,

which plots the product of reactor power and detector size versus baseline and the

corresponding ∆m2 sensitivity for reactor νe experiments [35]. The Kamioka Liquid-

scintillator Anti-Neutrino Detector (KamLAND) [50] reaches unprecedented ∆m2

sensitivity by satisfying both requirements simultaneously. First, it is the largest

liquid scintillator detector ever built, with 1 kton of active volume. Second, its source

consists of not one reactor complex but the entire Japanese nuclear power industry,

with a net thermal power output of 200 GW.

Figure 2.2 [51] shows the locations of reactors around Japan and the position of

KamLAND underneath Mt. Ikenoyama in Gifu Prefecture. Using the rated thermal

powers of each reactor, the distribution of the power flux at KamLAND versus reactor

distance is plotted in Figure 2.3. In real-life operations, reactor down-time results in

a slightly lower power flux at the KamLAND site. Almost 80% of the power flux

comes from reactors between 135 and 215 km, ensuring that the oscillation pattern

for Losc ≈ 100 km is not washed out. Since reactors emit νe’s with energies of typically

a few MeV, this configuration makes KamLAND sensitive to ∆m2 ≈ ∆m2
sol, placing

KamLAND in position to directly observe vacuum oscillations associated with the

LMA MSW solution to the solar neutrino problem. However, at such low energies,

20



21

2

KamLAND

Chooz, 98

Palo Verde, 00

Goesgen, 86

ILL, 81

Rovno, 88

Bugey 3, 96

Savannah
River, 86

1%
 p

er
 y

ea
r

10
%

 p
er

 y
ea

r

Neutrino Mass (    m   ) sensitivity ( eV   )

10 10 10 10 1010

10

10

10

10

10

−1 −2 −3 −4 −5 −6

2∆

10 m 100 m 1 km 10 km 100 km
Baseline

0

2

4

6

8

10
10

th
R

ea
ct

o
r 

P
o

w
er

 x
 T

ar
g

et
 M

as
s 

(M
W

   
  t

o
n

)

Figure 2.1: Product of reactor power and detector size versus baseline and the cor-
responding ∆m2 sensitivity for reactor νe experiments. Published experiments are
labeled by reactor site and year of publication. [35]
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one must take care to avoid backgrounds from natural radiation that could potentially

drown out the signal. Fortunately the νe detection method itself serves as a powerful

background rejection, as will be discussed shortly.

Electron antineutrinos are detected at KamLAND via inverse β-decay, in which

a νe annihilates with a proton (i.e. hydrogen atom) in a mineral oil based liquid

scintillator, producing a positron and a neutron: νe + p → e+ + n. The positron is

ejected from the interaction vertex with kinetic energy given by

Ee+ = Eνe − En −∆mn−p −me, (2.1)

where Eνe is the νe energy, En is energy of the neutron, ∆mn−p is the mass difference

between the neutron and the proton, and me is the mass of the positron. Since the

proton and neutron are so massive compared to the e+ and νe, En is small compared

to the other terms on the right hand side of the equation. The positron quickly slows

down as it deposits its energy in the scintillator by ionizing molecules in the liquid,

and then annihilates with a nearby electron, producing two 511 keV γ’s.

Scintillators emit light (i.e. “scintillation”) when ionized by charged particles and

penetrating radiation. In KamLAND’s organic liquid scintillator, ionized valence

electrons relax quickly to the first excited molecular orbital via internal degradation

and collisions with other molecules, processes that do not emit radiation. From the

first excited state, there is a high probability for radiative decay to a vibrational

excitation of the ground state. The energy of the emitted photons, which is on the

order of a few eV, is insufficient to re-excite transitions from the ground state to the

first excited state, explaining why scintillators are transparent to their own radiation.

For inverse β-decay, ionization from the positron’s energy loss and the two annihilation

γ’s occurs so quickly relative to the time scale of scintillation emission that they

appear as a single flash promptly following the moment at which the interaction

occurs. The scintillation light is emitted isotropically, and its brightness depends

on the total amount of ionization, which is roughly proportional to the initial kinetic

energy of the positron plus the energy of the two annihilation γ’s. Hence by collecting

the scintillation light an estimate may be made of the energy of this “prompt” event,
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Figure 2.2: The stars mark reactor locations around Japan. The location of Kam-
LAND is marked by the blue square. [51]
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Figure 2.3: Baseline distribution of the rated thermal power flux (φPth
) at KamLAND

from Japanese and Korean reactors. Nearly 80% of the total flux comes from the peak
centered at 180 km. Korean reactors comprise roughly 3% of the total flux, while
reactors from the rest of the world contribute at the 1% level.

Ep, which by Equation 2.1 gives a measure of the incoming νe energy. On average,

Eνe is given by

Ēνe = Ep + E∆, (2.2)

where E∆ = Ēn + ∆mn−p − me ≈ 0.8 MeV (the bar denotes an average). The

spread of Eνe is narrow due to the smallness of En. In addition to the brightness

of the scintillation light, if the arrival time of the spherical scintillation wavefront is

measured at various positions around the detector, the position of the event may be

precisely determined.

The neutron emitted concurrently with the e+ in the inverse β-decay quickly ther-

malizes via elastic interactions with protons in the scintillator, and any scintillation

emitted by the recoil nuclei in the process contributes negligibly to the brightness

of the prompt event. The neutron then undergoes a series of elastic interactions at

thermal energies, which do not produce detectable amounts of scintillation light, and

is eventually captured by a nucleus in the scintillator. The neutrons are primarily
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captured by protons via the interaction n + p → d + γ, where d is a deuteron and

the 2.2 MeV γ carries away the mass difference between the initial and final states.

The detection of this delayed monoenergetic gamma, typically within a few meters of

and a few hundred microseconds following the prompt positron event, provides the

extremely powerful background suppression alluded to earlier.

Detection of coincidence νe events at KamLAND gives a real-time measurement

of the νe flux and its energy dependence. The instantaneous differential detection

rate of the reactor νe signal, d2Nνe(Ep,t)

dEpdt
, may be expressed by the following equation:

d2Nνe(Ep, t)

dEpdt
=

∫ ∞

0

dE ′
νe

R(Ep, E
′
νe

)npσ(E ′
νe

)ε(E ′
νe

)×
reactors∑

i

Ii(E
′
νe

, t)

4πL2
i

Pνe→νe(E
′
νe

, Li; ∆m2, sin2 2θ). (2.3)

R(Ep, E
′
νe

) is the detector response function, including both the energy resolution

and the conversion to prompt energy, expressed by Equation 2.2. The parameter

np is the number of target protons, σ(Eνe) is the cross-section for inverse β-decay

[52], and ε(Eνe) is the possibly energy-dependent detection efficiency. Ii(Eνe , t) is

the instantaneous differential νe intensity of the ith reactor with units [νe’s per unit

energy per unit time], and Li is the reactor’s distance from KamLAND. Pνe→νe is the

νe survival probability, given by Equation 1.111. In addition to reactor antineutrinos,

KamLAND is sensitive to νe’s from the sun [53], heavy element deposits in the earth

[54], and any other significant antineutrino source. However, for energies greater

than 3.4 MeV, the background from known νe sources other than nuclear reactors is

negligible. For this reason the analysis reported here is restricted to νe energies above

this threshold.

Including the contributions
d2Nbg,j(Ep,t)

dEpdt
from non-νe backgrounds that mimic the

1Technically, Pνe→νe = Pνe→νe assumes CPT invariance; if CPT is broken, Pνe→νe has the
same form as Equation 1.11, but the parameters ∆m2 and sin2 2θ are different for neutrinos and
antineutrinos.
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νe signal, the total instantaneous differential event rate d2N(Ep,t)

dEpdt
at KamLAND is

d2N(Ep, t)

dEpdt
=

d2Nνe(Ep, t)

dEpdt
+

backgrounds∑
j

d2Nbg,j(Ep, t)

dEpdt
(2.4)

Equations 2.3 and 2.4 will be used to extract the best fit values of ∆m2 and sin2 2θ

from the KamLAND data. It should be noted that, while the details of the present

analysis differ from those published elsewhere [55, 56], the results and conclusions are

in good agreement.
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The Detector

KamLAND is located in the cavern that housed the original Kamiokande experiment.

The 2700 m.w.e. overburden reduces the cosmic ray flux by a factor of roughly 10−5

with respect to the surface flux. A schematic of the detector is shown in Figure 3.1.

It may be divided into two distinct regions, a 1 kton liquid scintillator inner detector

(ID) and a water Cherenkov outer detector (OD) that serves as a cosmic ray veto.

The ID and OD are physically separated by an 18 m diameter spherical stainless steel

containment vessel erected in the center of the cavern.

The ID is composed of concentric volumes of liquid scintillator (LS) and non-

scintillating mineral oil. The scintillator [57] consists of 80% dodecane and 20%

pseudocumene (1,2,4-trimethylbenzene) (by volume), with 1.52 g/liter of PPO (2,5-

diphenyloxazole) as a fluor. Measurements of its optical properties give an attenuation

length of 20 m, a light yield of 70% anthracene, and a refractive index of 1.44 (at

λ = 589 nm, 15◦ C). The scintillator density is 0.778 g/cm3 at 11.5◦ C; it is measured

to 0.01% precision, and an additional 0.1% error is assigned for the uncertainty in

the temperature. The calculated carbon-to-hydrogen ratio of 1:1.969 was verified

by elemental analysis to 2% precision. Combining this ratio with the scintillator

density and using the molar masses of carbon and hydrogen gives a proton density

of 6.608 ± 0.006 × 1028 m−3. A volume of 1200 m3 of scintillator is suspended in

a transparent, 13 m diameter spherical balloon made of 135 µm thick nylon/EVOH

(ethylene vinyl alcohol copolymer) composite film. The balloon is reinforced and

27
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Figure 3.1: A schematic diagram of the detector.

anchored to the containment vessel with a network of Kevlar ropes whose tension is

monitored by a set of load cells at the top of the detector. A buffer of 1800 m3 of

dodecane and isoparaffin oil fills the space between the balloon and the containment

vessel. The density of the buffer oil (BO) is 0.04% lower than that of the LS to

maintain the shape of the balloon. The LS and BO were purified during detector

filling using water extraction and nitrogen stripping techniques [58].

The scintillator is viewed by 1325 fast 17-inch aperture Hamamatsu photomulti-

plier tubes (PMT’s) custom-designed for KamLAND , and 554 20-inch PMT’s inher-

ited from Kamiokande [59]. As shown in Figures 3.2 and 3.3, the PMT’s are secured

to the inner surface of the containment vessel, facing the center of the detector. The

total photocathode coverage of the 17-inch tubes is 22%; when the 20-inch tubes are

included, the coverage increases to 34%. The quantum efficiency of the PMT’s is

about 20% for 340-400 nm light. The enveloping buffer oil shields the scintillator

from radioactivity in the PMT glass. A 3.3 mm thick, 16.6 m diameter acrylic sphere
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Figure 3.2: A photograph of PMT installation. The workers are, from left to right,
K. McKinny (University of Alabama), the author, and J. Ritter (California Institute
of Technology). Photo taken by T. Takayama (Tohoku University).

just in front of the PMT’s acts as a radon barrier.

A small opening in the top of the tank leads to a chimney and calibration device,

allowing an operator to deploy calibration sources along the vertical axis of the detec-

tor (z-axis) using a line-and-reel system. KamLAND uses four γ sources (203Hg, 68Ge,
65Zn, and 60Co), one neutron source (241Am/9Be). 203Hg undergoes β− decay to the

first excited state of 203Tl. The emitted e− is captured within the source, while the

decay of the 203Tl∗ emits a 279 keV γ. 68Ge undergoes β+ decay to 68Ga; the positron

annihilates inside the source, but the resulting pair of 511 keV γ’s escape, giving a

calibration point at the inverse β-decay threshold. 65Zn likewise undergoes β+ decay

to 65Cu, which 50% of the time produces a 1.115 MeV γ. The β− decay of 60Co to
60Ni emits a pair of 1.333 MeV and 1.173 MeV γ’s. The bombardment of 9Be by α’s

emitted in decays of 241Am can produce free neutrons through several pathways, such
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Figure 3.3: A photograph of the inner detector under construction. The workers
who can be identified are B.K. Fujikawa (Lawrence Berkeley National Laboratory)
handling the PMT on the far left, the author to his right, and J. Ritter (California
Institute of Technology) at the center of the photo. Taken by T. Takayama (Tohoku
University).
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as α +9 Be →12C(∗) + n, α +9 Be → α+8Be+n, or α +9 Be → 3α + n. Captures of

the free neutrons give γ lines at 2.2 and 4.95 MeV. The mode involving 12C∗ gives a

prompt 4.4 MeV γ in coincidence with the neutron thermalization scintillation.

Three thermometers at the bottom, center, and top of the detector are affixed to

a vertical line displaced slightly off the z-axis, out of the way of the calibration device.

The ID is hermetically sealed and the space in the chimney above the LS and BO

levels is flushed with radon-purified nitrogen gas to prevent oxygenation of the LS.

The OD is divided into four sections, labeled top, upper, lower, and bottom, con-

taining 50, 60, 60, and 55 20-inch PMT’s, respectively. To make up for the obstruc-

tion by the containment vessel, each section is lined with and physically separated

by sheets of highly reflective Tyvek plastic that enhance light collection. The OD is

filled with 2600 m3 of ultra-purified water that is filtered and circulated continuously.

Several coils of wire looped about the cavern cancel the earth’s magnetic field to

minimize the Lorentz force on photoelectron paths in the PMT’s.

Each PMT or “channel” is connected to two Analog Transient Waveform Digitiz-

ers (ATWD’s), custom application-specific integrated circuits developed at Lawrence

Berkeley National Laboratory. These chips record and measure the PMT pulses,

behaving similar to oscilloscopes tracing voltage changes on every channel. They

produce 128-sample digital waveforms at a variable sampling frequency, which is set

to ∼0.65 GHz to give approximately 200 ns of data in each waveform. The ATWD’s

are self-launching, and their low-noise properties allow single-channel discriminator

thresholds as low as 1
3

of a photoelectron (p.e.), giving a single photoelectron detec-

tion efficiency of > 95%. The ATWD’s record waveforms on three different gains,

providing enough dynamic range to measure amplitudes of up to thousands of pho-

toelectrons. Digitization of a pulse requires 30 µs; by using two chips per PMT, the

effect of the dead time is small. It is not insignificant, however, as will be discussed

further in Section 5.5. In early versions of the ATWD logic, the second ATWD would

be launched if a channel was still over threshold at the end of the digitization window

of the first ATWD. This lead to the collection of many spurious waveforms during

high-energy events creating very large pulses, such as muons. In March 2002, the

condition was changed to require the channel to re-cross the discriminator threshold.
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The ATWD’s and their accompanying electronics are mounted onto KamLAND

Front-End Electronics (KAMFEE) boards that are read out by VME buses. There

are 10 VME crates, with 20 boards per crate and 12 channels per board. One crate is

dedicated to the PMT’s in the OD. The data from each crate is read out by its own PC

via fiber optic cables. The data acquisition (DAQ) software, KiNOKO, is a networked

parallel processing system developed at Tohoku University. It is based on distributed

object technology, and coordinates the data collection across the KamLAND DAQ

network. In addition to DAQ performance monitoring and remedial online analysis

tasks, KiNOKO folds the data streams from the different crates together and writes

them to disk. Each ATWD is read independently, so their waveforms are written to

disk out of time-order and are sorted off-line.

The ID PMT’s have dark rates on the order of tens of kHz. Since each wave-

form requires 256 B of memory, it is impossible with current network and computer

technology to record data from all channels all the time. Instead, data is only taken

when a large number of 17-inch PMT’s are hit within a very short time period. The

trigger module that detects such coincidences and commands the ATWD’s to write

their waveforms to the data stream were developed at Stanford University. Every

25 ns, each KAMFEE board sends a digital signal to the trigger module specifying

the number of channels on the board that exceeded their discriminator thresholds in

the past 125 ns. The trigger module calculates the sum of all these signals, called

“nsum”, for the ID and for each OD section every 25 ns, compares it to a thresh-

old, and issues trigger signals to the ATWD’s if it deems necessary based on various

criteria described below. Trigger information is read out to the data stream by a

dedicated PC using KiNOKO.

In order to facilitate the association of waveforms with trigger records downstream,

each trigger record and waveform is accompanied by a timestamp, the number of ticks

counted by the trigger module’s 40 MHz clock between the start of the run and the

issuing of the associated trigger signal. The clock is fanned out from the trigger

module to all KAMFEE boards so that the waveform timestamps can be applied

at the ATWD level. The waveform records contain additionally the launch offset of

the ATWD, the number of clock ticks between the launching of the ATWD and the
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issuing of the trigger signal. This allows waveforms to be stored in the ATWD’s for

up to tens of clock ticks waiting for the trigger signal while still retaining the ability to

reconstruct exact pulse timings downstream in the analysis. A GPS receiver delivers

a 1PPS signal to the trigger module, periodically accompanied by an IRIG B time

code. The GPS signals are used to monitor and verify the stability of the clock,

to determine precisely the clock frequency, and to synchronize the timestamps with

UTC to within 150 ns.

The trigger module design incorporates three Field-Programmable Gate Arrays

(FPGA’s), with which triggering algorithms of varying complexity can be imple-

mented. KamLAND is typically operated in “prompt-delayed” triggering mode, in

which a prompt trigger is issued when the ID nsum (nsumID) exceeds 200, and a

delayed trigger is issued when it goes above 120 within 1 ms of a prompt trigger. The

prompt-delayed trigger rate is typically about 25 Hz. Trigger-only records, called

“history” records, are recorded for up to 8 clock ticks (200 ns) whenever nsumID

exceeds 120. The maximum value of nsumID in the train of history records accom-

panying an event, called nsmxID, is highly correlated with the total number of PMT

hits, and hence the energy of the event. The distribution of nsmxID for a typical

run is shown in Figure 3.4. Features such as the triggering thresholds, several radio-

peaks/shoulders, and the muon rate can be identified in this distribution, making it

useful for preliminary analysis and online monitoring.

The top, upper, lower, and bottom OD sections are triggered when their individual

nsums exceed 6, 5, 6, and 7, respectively. Series of OD history records are also

recorded when these thresholds are exceeded. Whenever the ID or any OD section

is triggered, a trigger signal is also sent to the rest of the detector (this was not

true for the first few months of data-taking due to a bug in an early version of the

trigger module logic). The trigger module is also capable of issuing trigger signals

from an external source, such as a signal generator, a laser pulse, or any TTL or NIM

signal. Several other triggering schemes are implemented for test runs, calibrations,

monitoring, etc., such as pre-scale triggers, and clock and pedestal captures described

in Section 4.2.

One last triggering scheme that must be mentioned is “supernova mode”. Should
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Figure 3.4: Distribution of nsmxID. The vertical lines at nsmxID = 120 and 200
represent the delayed and prompt trigger thresholds, respectively. The peak at very
low nsmxID is due to calibration triggers which are uncorrelated with physics events
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and 400 are due, respectively, to 210Pb in the LS and 208Tl concentrated near the
thermometers and the balloon surface. The peak at nsmxID = 1325 is due to muons
crossing the LS, while the peak just below 1325 is due to electronics noise following
muons.
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a supernova occur within our galaxy, KamLAND would likely detect around 300 νe’s

with a mean energy of about 15 MeV. The initial observation rate would be on the

order of 100 Hz, and would decay exponentially with a ∼3 s decay constant [50].

The trigger module watches for supernovae by counting the number of events with

nsmxID > 772 in the last 225 clock-ticks (840 ms). If the count reaches 8 events, the

trigger module switches to supernova mode for 1 minute, during which the threshold

is lowered to 170 in order to increase the efficiency for detecting lower energy proton

scatters of neutrinos emitted in the supernova. These events, if they are detectable

above backgrounds, are useful for calculating the temperature and luminosity of the

supernova [60]. Operators are not allowed to interrupt data taking while the detector

is in supernova mode.

Before writing the data to disk, waveforms are first compressed by a factor of ∼3

using an implementation of lossless Huffman encoding optimized for single-photoelectron

waveforms. The compressed, asynchronous waveforms are written to disk along with

the trigger data at a rate of about 180 GB per day. Further processing is done off-

line. Data is taken 24 hours a day, stopping only for problems, calibration runs,

upgrades, testing, or daily run-number changes. Data-taking is monitored by sev-

eral automated programs and on-site collaboration members. The raw data is copied

daily onto tapes, which are then mailed to data libraries in the US and Japan for

analysis. The analysis reported here employed the High Performance Storage System

and Parallel Distributed Systems Facility at the National Energy Research Scientific

Computing Center at Lawrence Berkeley National Laboratory.
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Event Reconstruction

4.1 Event Building

The first step in the event reconstruction process is to sort the asynchronously col-

lected waveforms and trigger records and group them into events. The sorting process

is simple in principle since each waveform record contains the timestamp of the trig-

ger signal issued to acquire it. However, during bursts of high activity, data from

one ATWD may be recorded in the data stream up to 5 or 10 seconds after the data

from another ATWD. Combined with data rates of around 2 MB/s, the memory han-

dling for event building is rather involved. Waveforms arriving more than 5 minutes

out-of-order cannot be sorted and are thrown out. The event building software was

verified with other less complicated and less memory-intensive codes which simply

count waveforms and trigger records for each time stamp. Comparing counts before

and after the event building process established that the efficiency for building physics

events is greater than 99.999%. The dropped events occur almost exclusively during

noisy periods with trigger rates in the kHz range, which are vetoed for the analysis.

4.2 Waveform Analysis

After the waveforms are collected and time sorted into events they are processed by

a series of algorithms which search for pulses in the waveforms, extract their arrival

36
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times, and estimate the number of photoelectrons that arrived at each PMT. The

times and photon counts are used by event reconstruction software to estimate the

positions and energies of events. Described briefly below are the algorithms used in

this analysis. Most of these algorithms assume that events create only enough light

to produce at most a few photoelectrons per channel. For high energy events such

as muon tracks, very large pulses are created in every channel. For some steps in

the waveform analysis, a secondary algorithm is implemented that is optimized such

large pulses. These algorithms are used only by the muon track fitting software.

4.2.1 Pedestal and Baseline Subtraction

The component of the ATWD that actually captures the PMT pulses is essentially

an array of 128 capacitors, each of which stores the height of the incoming pulse

at different times. The sampling frequency is tunable, and is set to ∼0.65 GHz. A

raw waveform is simply a listing of the voltages across the capacitors. An example

of a raw waveform is shown in the upper trace in Figure 4.1. The appearance of

this waveform is affected by two phenomena: a sample-to-sample variation called

the “pedestal”, and a low-frequency fluctuation that results in an overall shift of the

waveform’s baseline.

In the absence of an input signal, each capacitor rests at a constant base voltage

that is different from capacitor to capacitor. These base voltages are the ATWD’s

pedestal, and they must be subtracted from the waveform before it can be further

processed. The pedestals are measured at the beginning of every run via a series of

50 forced-acquisition triggers in each gain of each ATWD. The waveforms obtained

are averaged and subtracted from waveforms subsequently collected in the run. With

PMT dark rates on the order of tens of kHz, the chances of a pulse accidentally

occurring during a forced-acquisition trigger is small but non-zero. So the pedestal

waveforms are scanned for samples deviating more than 4σ from their means; pedestal

waveforms containing such deviations are flagged as noise and rejected, and the re-

maining pedestal waveforms are re-averaged. This method has been found to very

efficiently remove pulses and other noise from the pedestals. An example of a pedestal
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Figure 4.1: A raw waveform with two distinct pulses. The upper trace is the raw
data; immediately below it is the pedestal for the ATWD that recorded the pulse
The bottom trace is the pedestal- and baseline-subtracted waveform.

waveform so obtained is shown immediately below the raw data trace in Figure 4.1.

Due to low-frequency variations in the bias on the input signals, the waveforms are

found to float at a non-zero baseline, even after the subtraction of the pedestal. The

baseline is different for every waveform, and must be determined from the waveform

shape and subtracted away for every event. The procedure is to sort the ADC values

from lowest to highest and compute their mean. Then samples with the largest

deviations from the mean are successively removed from the sorted list, pushing the

mean of the remaining samples closer to the flattest region of the waveform. The

process is iterated until the deviations of the largest and smallest ADC values from

the mean are approximately the same, to within an accuracy δ = 0.025. The last

calculated mean is the estimate of the baseline, which is then subtracted from the

waveform. Unfortunately, this method fails for very large pulses which do not return

to their baselines by the end of the sampling window. For such pulses, a secondary

waveform analysis is performed in which the baseline subtraction consists simply of

subtracting off the average of the first 10 samples in the waveform.
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An example of a pedestal- and baseline-subtracted waveform is shown as the

bottom trace in Figure 4.1. This particular waveform happened to require very little

baseline subtraction. The apparent high-frequency noise in the raw waveform has

been removed by the pedestal subtraction, giving a clean trace in which two single

photoelectron pulses can be easily seen.

4.2.2 Pulse Finding

The first step in pulse finding algorithms is typically to smooth the pulses, remov-

ing high frequency noise. The waveforms in this analysis were smoothed using the

Savitzky-Golay filtering algorithm [61], in which the smoothed value of each data

point was calculated based on a kth order polynomial fit to at least the k + 1 sur-

rounding data points. Here a 4th order polynomial was fit to the 15 surrounding data

points. The Savitzky-Golay method is touted for its preservation of features such

as peak height and width that other smoothing procedures tend to distort (see, for

example, [62]).

The actual pulse finding algorithm proceeds as follows. First, the waveform is

divided up into positive regions, contiguous sections within which all samples of the

pedestal- and baseline-subtracted, Savitzky-Golay-smoothed waveform are greater

than 0. Each section is considered a candidate pulse. Then the charge of each

candidate pulse (the area beneath the waveform) is computed, and candidate pulses

are rejected as noise if their charges are less than 15% of the summed charge of all

candidate pulses. The summed charge is recomputed after each rejection. For the

pulses that survive the 15% cut, the arrival times are determined from quadratic

approximations of their peak positions. The times are accurate to within a fraction

of a sample, much better than the ∼ 2 ns transit time spread of the 17-inch PMT’s.

One drawback of this pulse-finding algorithm is that multiple overlapping pulses

are counted as a single pulse if the trace remains positive in the overlap region,

as shown in Figure 4.2. However, what it lacks in complexity it makes up for in

robustness due to its lack of dependence on pulse shape, and downstream analysis

components are written to be as insensitive as possible to the algorithm’s inability to
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Figure 4.2: An example of a double pulse tagged by the pulse-finding algorithm.
Because the trace does not drop below 0 ADC counts between the pulses, they are
counted as a single pulse. The area of the pulse is the region shaded yellow.

distinguish multiple pulses

Another aspect in which this algorithm is found to be less-than-optimal is in the

time estimation of very large pulses. Due to AC coupling, the peak position of such

pulses depends essentially on their size, with larger pulses peaking later. It is for this

reason that the pulse finding algorithm is insufficient for the needs of muon track

reconstruction algorithms. The timing of a large pulse is better estimated by locating

the time at which it begins to rise above its baseline. This is done by setting a simple

threshold of 50 ADC counts and using the time at which the rising edge crosses it.

4.2.3 Sampling Rate Measurement

Converting the units of the pulse arrival times from [samples] to [nanoseconds] requires

precise knowledge of the sampling frequency, which may vary from ATWD to ATWD.

To determine the sampling frequency precisely, the 40 MHz clock signal sent to each

KAMFEE board from the trigger module is digitized ∼50 times by each ATWD at

the beginning of every run. The waveforms are pedestal-subtracted and averaged,
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and a Fourier transformation is performed. The largest peak in the power spectrum

is identified as the 40 MHz line, and the weighted mean position of the the 5 bins

to either side of the peak gives the corresponding frequency in [samples−1]. The

sampling frequency of the ATWD is then given by the inverse of the peak frequency

times 40 MHz. The typical frequency is found to be ∼0.65 GHz.

4.2.4 Q0, Yield, T0, and T -Q Corrections

Each PMT and electronics channel exhibits slight differences in gains, cable lengths,

quantum efficiency, noise etc., which may change from run to run due to, for example,

electronics changes (board swaps) or temperature variations. Before pulses can be

compared or combined in calculations downstream, their charges must be normalized

relative to each other to account for such differences, and their times must be ad-

justed to account for any constant offsets. These adjustments are called Q0 and T0

corrections, respectively. Additionally, the reconstructed arrival time of a pulse may

vary as the charge increases, necessitating an additional “T -Q” correction for larger

pulses.

The Q0’s are determined from central 60Co calibration data. Events are selected

that have between 200 and 1000 waveforms, and whose position reconstructs to within

a radius of 1 m from the detector center. A subtraction is made for dark noise

appearing very early or very late in the event. The mean of the charge distribution

Q̄ is calculated for each ATWD, as is the relative efficiency or “yield”, the fraction of

events in which the ATWD registered a hit. With the Q̄’s and yields, it is possible

to convert the charge of an event into a quantity proportional to the number of

photoelectrons incident on the tube. This is done by dividing by Q0, the charge of a

single p.e. at the tube, corrected for yield. Denoting the yield by y, we write

Q̄ =
Q0

y

∞∑
n=1

nP (n|µ), (4.1)

Where P (n|µ) is the poisson probability of observing n p.e. when µ = − log(1 − y)

were expected. For 60Co calibration source events, µ ≈ 0.09. Since contributions to
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Q̄ from P (3|µ) and above are at the 0.01% level, the series may be truncated at 2

p.e. Solving for Q0, one obtains

Q0 =
yQ̄

P (1|µ) + 2P (2|µ)
. (4.2)

In this analysis, the quantity number-of-photoelectrons (npe) is used to refer to the

Q0-corrected event charge. The Q0’s for one 60Co calibration are used for all data

taken until the next calibration. Typical time between calibrations is ∼1 week for

early data, and ∼1 month currently. The Q0’s have a mean value of around 20 with

a ∼10% spread.

The T0’s are also calculated from central 60Co calibration runs with the same event

selection as for the Q0’s. For each event, the average time of events within 30 ns of

the median event time is calculated. The difference of each pulse time from this

average time is histogrammed for each ATWD over all events in the calibration run.

The histograms are then smoothed with the 353QH algorithm [63], and preliminary

values of the T0’s are taken from their peak positions. Corrections to the T0’s are

calculated by repeating the entire process, but with pulse times corrected with the

preliminary T0’s. Additional iterations are not found to change the T0’s significantly.

The spread of the T0’s over all tubes is about 20 ns. Like the Q0’s, the T0’s are

updated for each calibration period.

As discussed in Section 4.2, the T -Q correction for very large pulses is so big that

they require a completely different estimation of the pulse time. But even events with

energies of a few MeV will have a few moderately large pulses. To minimize biases

from these pulses in the position estimation of such events, a small T -Q correction

is applied. The bias in the estimation of the pulse times were assumed to be a

property of the peak finding algorithm used. Hence the T -Q correction was estimated

and applied as an average correction, identical for all channels. The correction was

obtained from 337 nm laser calibration data; light in this frequency range is absorbed

by the scintillator and re-emitted. The laser is set to pulse at a constant rate, making

event selection trivial, and the intensity of the light is precisely varied using a series

of neutral-density filters. For each laser event, pulses were Q0- and T0-corrected, and
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for similar charges the difference between the pulse times and the trigger times were

histogrammed. The peak pulse time was then plotted as a function of charge q, and

the variation with charge was fit with a 3rd order polynomial in q. The time correction

δt(q) was determined to be

δt(q) = 0.5175q − 0.0195q2 + 0.0003q3. (4.3)

Note that the 0th order coefficient would shift all times by the same amount and thus

affects only the reconstruction of the global event time. Since the T -Q correction

is assumed to be a property of the waveform analysis rather than a time-varying

property requiring periodic calibration, the same coefficients are used for all run

periods.

4.3 Vertex Fitting

Scintillation light is emitted from the event vertex, the interaction point, in all di-

rections. The closest PMT’s will receive the earliest pulses, and further PMT’s will

receive later pulses with the time spread determined by the speed of light in the scin-

tillator. The timing pattern of the pulses provides the most accurate event position

information, as well as the best estimate of the exact time at which the event occurred.

However, pulse time errors, re-emission, attenuation, and any differences between the

indices-of-refraction of the scintillator and buffer oil complicate the event’s pulse-time

distribution, preventing a straightforward analytical calculation of the event vertex

and time.

The algorithm developed for this analysis finds the event vertex iteratively. A pre-

fitter based on the pulse-charge distribution of the event provides an initial guess, and

the pulse-time distribution is used to push the vertex, step by step, to an optimal

position. The algorithm makes use of the known detector geometry, and has two

tunable parameters, the “effective” light speeds in the scintillator and the buffer oil.

These parameters are different from the physical speeds of light in these media in that

they incorporate dispersion and retardation effects such as re-emission. While a more
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physical parameterization of the light transport may be desirable, as shown below

the fitter performs so well with just these two parameters that the incorporation of

further detail into the light transport model was deemed unnecessary.

4.3.1 Charge-Based Pre-fit

The charge-based pre-fit is essentially a Q0-corrected charge-weighted average of the

positions of PMT’s registering hits in an event. This estimate of the event vertex is

inherently biased: for an ideal, point-like vertex in a spherical detector with uniform

photocathode coverage, even ignoring absorption, reflections, etc., a simple integra-

tion will show that the radius of the event is reconstructed roughly a fraction 2/3

too small for events not too close to the PMT’s. Fits to calibration data show that

in practice the fraction is about 0.62, and the pre-fit radius is accordingly expanded

to counteract the bias. Even the angular event coordinates will be slightly misrecon-

structed by the pre-fit, due to the holes in the PMT coverage at the chimney and at

the bottom of the detector. However, such small effects are ignored, since the pur-

pose of the pre-fit is merely to place the vertex in roughly the right spot so that the

time-based fitting procedure can quickly and easily home in on the optimal vertex.

4.3.2 Time-Based Fit

Were the optimal vertex known in advance, the event time T would be best estimated

by subtracting from the pulse times ti the travel times τi from the optimal vertex to

the tubes registering the pulses, and then taking the average:

T ≈ 〈t̃〉 =
1

N

N∑
i=1

t̃i, (4.4)

where t̃i denotes the corrected time ti − τi. The τi may be calculated knowing the

detector geometry and the speeds of light in each material traversed. Given an initial

guessed vertex, which may be far from the optimal vertex, a more optimal position

may be found as follows. First, the event time is estimated as if the vertex were

optimal using Equation 4.4. Then the moment of each t̃i about 〈t̃〉 is used to define
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a push δri in the direction r̂i between the guessed vertex and PMT i: t̃i > 〈t̃〉 means

that light arrived at the tube later than expected for the guessed vertex, and it should

therefore be moved closer to the tube, and vice versa for t̃i < 〈t̃〉. The equation is

δri = cLS(t̃i − 〈t̃〉)r̂i, (4.5)

where cLS is a tunable parameter that represents the effective speed of light in the

liquid scintillator. The average push over all pulses, 〈δr〉, moves the guessed vertex

to a more optimal position, and the process is repeated until 〈δr〉 becomes small.

The above assumes a point-like event and gaussian errors on the ti. The various

corrections on the ti described in Section 4.2.4, namely the T0 and T -Q corrections,

remove the major biases that would invalidate the latter assumption, so it is ignored.

However, the former assumption of point-like-ness is not strictly correct, not only

because the particle generating the scintillation light travels a finite distance, but

more importantly because not all of the light in the event is emitted at the same point

in time. See the T0-corrected pulse-time distribution for a central 60Co calibration run

shown in Figure 4.3. The distribution is marked by a sharp peak followed by a long tail

with fast (∼10 ns) and slow (∼70 ns) decay components typical of organic scintillators.

The finite emission time, scattering, reflections, re-emission, etc., complicate the fit

by adding hits at times lagging relative to the interaction time. In order to minimize

the biasing effects of these phenomena on the vertex fitting, the algorithm selects

only pulses appearing in the peak of the corrected pulse-time distribution for the

calculations described by Equations 4.4 and 4.5. The t̃i are histogrammed into 1 ns

bins, and the peak is fit with a gaussian. Pulses with t̃i not falling within 10 ns

of the peak are removed from the fitting process. It is this step that requires the

initial charge-based pre-fit, so that the times near the peak are already those that

best constrain the vertex. Also, by reducing the number of pulses used, this step

makes the fit rather untrustworthy at energies much below 1 MeV, where the total

number of detected photons is less than 100.
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Figure 4.3: Distribution of T0-corrected pulse time differences from their average for
a 60Co calibration run. The data are fit to a gaussian-resolved double-exponential
drawn in solid black. The fast and slow decay times fit to ∼10 ns and ∼70 ns,
respectively.

4.3.3 Calibration and Performance

There are two tunable parameters in the fitter, namely the effective speeds of light in

the liquid scintillator, cLS, and the buffer oil, cMO, which appear in the calculation of

the τi and in Equation 4.5. The fitter was tuned using radioactive calibration source

deployments along the z-axis. Sources were suspended from a stainless steel cable

whose deployed depth was read out from an encoder. The encoder was calibrated

to better than 1 cm accuracy by comparing the readout with marks made at 1 m

intervals along the length of the cable. Events from the calibration sources, with

energies ranging from 1 to 8 MeV, were selected using cuts on nsmxID or energy to

isolate the source peak. An additional loose cut requiring the reconstructed position

to lie within 2 m of the expected source position helps eliminate large backgrounds

from activity at the balloon surface for deployments near the very top or bottom

of the LS. The reconstructed z-positions were histogrammed, and each distribution

was fit to a gaussian. The values of cLS and cMO were varied until the z-biases,
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Figure 4.4: Vertex reconstruction biases for various calibration sources. A constant
offset of ∼2 cm may be seen; the variation about this offset is less than 5 cm for
positions within 5.5 m.

the differences between the deployed and reconstructed positions, were as small as

possible for all sources. For z-positions within 5.5 m, the final z-biases, shown in

Figure 4.4, vary by less than 5 cm about a ∼2 cm offset. Variations with energy,

which are particularly evident near the top of the detector, are at the level of 2 to 3

cm.

Figure 4.5 shows the position distribution of reconstructed events for a typical

day-long run. The axes are reconstructed z-position and cylindrical-radius ρ, where

the latter is divided by the balloon radius (rball) and squared in order for each bin to

represent an identical amount of volume. The shape of the balloon and its deviation

from sphericity in the upper half of the detector is illuminated by high activity on the

balloon surface. The most active region of the detector is the chimney region, where

shielding to external γ-rays is lowest. Activity from the three thermometers deployed

just off the z-axis can also be seen in the figure.
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Figure 4.5: Distribution of normal physics events plotted in z vs. cylindrical radius
squared. Activity is concentrated at the chimney and at the bottom of the balloon.
Radioactivity in the balloon surface and from a thermometer deployed near the center
of the detector are also evident.

4.4 Energy Estimation

The estimation of an event’s energy is a position- and particle-dependent conversion

based on the hit pattern and the amount of light collected in the event. The conversion

is divided into two steps: first the position dependence is removed by calculating

the amount of light that would have been collected had the event occurred at the

center of the detector. The result of this conversion is expressed in a unit called

“analysis energy”, or Ea, in which 0 corresponds to the minimum bias and 2.506 MeV

corresponds to the amount of light collected in a typical 60Co γ event when the

source is deployed at the center of the detector. The second step involves a particle-

and energy-dependent transformation from Ea to the “real” energy deposited by the

particle assumed to be involved in in the event.
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4.4.1 Calculation of Ea

The calculation of Ea is based on a maximization of the likelihood of the pattern of

hit PMT’s around the detector. In order to minimize the dependence on waveform

analysis, the likelihood function is written as a function of only which tubes did and

did not register hits:

L(Ea, r) =
1879∏
i=1





1− e−µi(Ea,r) if hit

e−µi(Ea,r) if not hit
(4.6)

Here µi(Ea, r) is the energy- and position-dependent average number of photoelec-

trons for the ith PMT, where the position of the event r is taken from the vertex

fitting procedure described in Section 4.3. The functional form of the µi(Ea, r) is

dictated by the definition that Ea be proportional to the amount of light emitted by

the event, and by the requirement that Ea = 0 corresponds to noise levels. We can

immediately write

µi(Ea, r) = αi(r)Ea + δi, (4.7)

where αi(r) is the fractional amount of light detected at the ith PMT for an event

at position r, and δi is the dark rate in that tube. In order that the µi(Ea, r) have

units of photoelectrons and Ea be in MeV, the units of αi(r) are [p.e. MeV−1]. The

scale of αi(r) is arbitrarily set so that Ea = 2.506 MeV corresponds to the average

number of photoelectrons collected in 60Co calibration source event at the center of

the detector.

The αi(r) depend on the light transport properties of the scintillator as well as the

quantum efficiency and orientation of the PMT in question. The light transport model

implemented incorporates absorption only; reflections and re-emission are ignored, as

is asymmetrical shadowing from the ropes. Switching to a coordinate system with

origin at PMT i and positive z-axis pointing toward the center of the detector, we

write

αi(r) = ηi
Ω(r, θ)e−r/Λ

Ω(rPMT , 0)e−rPMT /Λ
. (4.8)
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Here ηi accounts for both the quantum efficiency of the tube and the arbitrary rescal-

ing constant described above; Λ is the absorption length, r and θ are the spheri-

cal coordinates of the event in the chosen coordinate system, rPMT = 8.5 m is the

distance between the PMT and the center of the detector, and Ω(r, θ) is the solid

angle subtended by the PMT relative to the event vertex. Monte Carlo studies using

the detailed shape of the PMT’s show that the solid angle is well approximated by

the relation Ω(r, θ) ≈ A
r2 (0.1 + 0.9 cos θ), where A is the cross-sectional area of the

photocathode when viewed head-on. The term in the denominator of Equation 4.8

normalizes the the position-dependent contribution to αi(r) relative to its value for

an event at the center of the detector, weakening the correlation between ηi and Λ.

It should be noted that, when all tubes are hit, the likelihood function of Equa-

tion 4.6 is maximized when Ea → ∞. However, this is not a problem for energies

relevant for reactor νe studies, for which the µi are all . 1, ensuring that a significant

number of tubes are not hit so that the energy estimation is accurate.

4.4.2 Calibration and Performance

All together, there are 2 parameters to be determined for each tube, ηi and δi, and

additionally one global parameter Λ. The calculation of Ea is found to depend weakly

on the value of Λ, with values between 15 m and 40 m giving roughly the same results.

So for computational simplicity the value of 25 m is used. The δi are determined on

a run-by-run basis by averaging the hit rate for each tube during the period in the

event time window prior to the arrival of light from the event itself (represented by

the parameter “baseline” in the fit in Figure 4.3). That hit rate is then rescaled by

the amount of time a channel is available to take data during an event. The ηi are

determined from fits to 60Co calibration data taken along the z-axis of the detector.

For each deployment at position rj = (0, 0, zj), the number of source events N are

counted, as well as the number of events ni(rj) with hits in PMT i. The values of

the ηi are obtained by maximizing the likelihood function

L =
∏
i,j

(
1− e−µi(2.506MeV,rj)

)ni(zj) (
e−µi(2.506MeV,rj)

)N−ni(zj)
. (4.9)
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Figure 4.6: Variation of 60Co energy reconstruction versus z-position of the deployed
source.

For a typical calibration, the average of the ηi is 0.220 ± 0.004 p.e. MeV−1 for the

17-inch tubes, and 0.293 ± 0.005 p.e. MeV−1 for the 20-inch tubes. The average δi

for 17-inch tubes is 0.023± 0.002, while for 20-inch tubes it is 0.036.

Figure 4.6 shows the resulting variation in reconstructed energies along the z-axis

for 60Co calibration sources. The variation is ∼1% for positions within 5.5 m. Shad-

owing by the Kevlar ropes constraining the balloon may contribute to the variation

and is the subject of current study.

The variation of the energy estimation off-axis is tested by reconstructing the

energies of spallation neutron capture γ’s following muons. The muons are tagged

according to their large light emission, as discussed in Section 4.5.1. Events with

nsmxID > 250 occurring between 150 µs and 2 ms following a muon are tagged as

spallation neutron candidates; events in the following 100 ms are tagged for back-

ground subtraction. Events within the first 150 µs following a muon are ignored due

to noise associated with ringing in the electronics that drown out physics events. Fig-

ure 4.7 plots the background-subtracted distribution of the energies of these events

vs. spherical radius cubed (r3), normalized to the radius of the balloon. The 2.2 MeV
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Figure 4.7: Energy of spallation neutron events versus r3. Gaussian fits to slices of
constant r3 give a variation of 0.58% for r < 5.5 m.

np-capture γ peak can be clearly seen. Gaussian peaks are fit to the γ peak in slices

of constant radius; the variation of these peaks for positions within 5.5 m was found

to be 0.58%.

The stability of the energy reconstruction over the data taking period is tested

with periodic calibration data. Figure 4.8 shows the results for 60Co calibration data.

The variation is at the fraction-of-a-percent level, not surprising since the energy

estimation is calibrated to the 60Co γ-line.

Figure 4.9 shows the energy distribution for normal, prompt-trigger physics events

collected in a typical day-long run. A 150 µs veto has been applied after muon events

to remove noise. The nsmxID > 200 threshold appears as a wall at ∼1 MeV. The

contributions from 210Pb and 208Tl visible in the nsmxID distribution (Figure 3.4)

appear sharper here. The muon peak is at energies À 10 MeV and is not shown. The

flat spectrum above 5 MeV is due to muon spallation products with lifetimes longer

than 150 µs.
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Figure 4.8: Time variation of 60Co energy reconstruction. The variation is at the
fraction-of-a-percent level.
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Figure 4.9: Energy distribution of physics events. The lack of events below 1 MeV is
due to the triggering threshold. The tail to higher energies are primarily spallation
products.
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Figure 4.10: A fit of the resolution function (Equation 4.10) to calibration points.
The parameter a has been fixed to 0.1 MeV to match dark rate levels indicated by
the calibration constants.

4.4.3 Energy Resolution

The energy resolution function is approximated as a gaussian with width σ dependent

on the square-root of the number of collected photons. It may be written

σ(Ea) ≈ k
√

Ea + a, (4.10)

where k and a are constants to be determined from the calibration data. The constant

a accounts for the contribution to σ from the dark rate that is subtracted off by the

δi. A fit of σ(Ea) to the values of σ extracted from gaussian fits to the calibration

source event distributions is shown in Figure 4.10. The best fit (with a constrained

to be non-negative) yields a value of 0 for a; however, small positive values of a still

fit the data reasonably well. Since the δi are found to be roughly 10% of the ηi, a is

fixed by hand to equal 0.1 MeV. The fit value for k is 6.4± 0.2%.
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4.4.4 Conversion from Ea to E

The “real” energy deposited by a particle passing through KamLAND’s scintillator

is not quite the same as the analysis energy returned by the energy estimator. While

Ea is a quantity that is proportional to the light yield Y of an event, the amount of

light emitted is not strictly proportional to the incident particle’s energy due to two

effects, quenching and Cherenkov emission.

Quenching is the saturation of scintillation emission for highly ionizing particles.

This saturation is well described by the semi-empirical Birks’ Law [64], which relates

the infinitesimal light yield dY during a step dx to the energy lost during the step
dE
dx

:

dY

dx
∝

dE
dx

1 + kB
dE
dx

. (4.11)

The constant kB is called the Birks constant and depends on the chemical composition

of the scintillator. kB is positive, so the denominator is greater than unity. The light

yield is lower when dE
dx

is large, so that for example a highly ionizing α particle will

emit much less scintillation light than a proton or electron of the same energy.

A charged particle emits Cherenkov radiation if its velocity exceeds the speed

of light in the medium being traversed. Cherenkov emission is the electromagnetic

analogy of the formation of a wake behind a boat traveling faster than the speed of

waves on a body of water, or the formation of a sonic boom from a jet traveling faster

than the speed of sound. The opening angle θc of the “light-wake”, or the Cherenkov

cone, of a particle traveling with velocity v in a medium with refractive index n is

given by

θc = arccos
( c

nv

)
, (4.12)

where c is the speed of light. The spectrum of light emitted per unit length is

d2N(E)

dEdx
=

αz2

~c
sin2 θc, (4.13)

where α is the fine-structure constant, z is the particle’s charge in units of the electron

charge, and ~ is Plank’s constant divided by 2π. The energy dependence of the
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spectrum is inherited through θc from the frequency dependence of the refractive

index.

The relationship between analysis and real energy may be written as

Ea

E
∝ 1− δq(E, kB) + kcδc(E), (4.14)

where δq and δc account for the fractional losses and gains due to quenching and

Cherenkov emission, respectively. For a given particle and for a particular value

of kB, δq(E, kB) may be calculated by integrating Equation 4.11; δc(E) is likewise

determined by Equation 4.13. The constant kc represents the fractional collection

of the Cherenkov radiation, accounting for the absorption and re-emission of the

radiation as well as photocathode coverage and the quantum efficiency of the PMT’s.

Both kB and kc must be determined from the data.

The functions δq(E, kB) and δc(E) were calculated for energies up to 30 MeV using

the EGSnrc [65] Monte Carlo package for γ’s and e±’s in KamLAND’s scintillator. In

the simulation, the quenching and Cherenkov emission are summed step-by-step along

the path of a simulated particle until it reaches a tracking threshold. This tracking

threshold necessitates the addition of another particle- and energy-dependent factor

k0δ0(E) to the right-hand-side of Equation 4.14 to allow part of the energy lost below

the tracking threshold to be recovered. The constant k0 performs the same function

for δ0(E) that kc performs for δc(E), and likewise must be determined from the data.

The functions δ0(E) are a byproduct of the simulations.

The values of kB, kc, k0, and the proportionality constant in Equation 4.14 are

obtained from fits to calibration data using MINUIT [66]. In order to weaken the

correlation between the fit parameters, the actual fit function was normalized by its

value at the energy of an np-capture γ, Enp = 2.2 MeV, giving

Ea(E,ΘE)

E
= a

1− δq(E, kB) + kcδc(E) + k0δ0(E)

1− δq(Enp, kB) + kcδc(Enp) + k0δ0(Enp)
. (4.15)

The constant a accounts for both the normalization and the arbitrary scaling of Ea;

the symbol ΘE is a shorthand representation of the four parameters to be fit. The
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Figure 4.11: Fit of Equation 4.15 to γ calibration source energies. The grey shaded
region depicts the 1σ error bars.

results of the fit are shown in Figure 4.11, where kB is constrained primarily by

the α lines detected in 212Bi-212Po and 214Bi-214Po coincidences, and the remaining

parameters are determined from calibration source γ lines. The value of kB was found

to be (1.046 ± 0.039) × 10−2 g/cm2/MeV, but the fit to the γ data depends very

weakly on this parameter. The remaining three parameters fit to a = 1.122± 0.0029,

kc = 0.29± 0.11, and k0 = 0.34± 0.13. The grey shaded region depicts the 1σ error

bars on the energy scale transformation.

Equation 4.15 is transcendental in E and must be numerically solved to obtain

the desired transformations for each particle type, Eγ,e±(Ea,ΘE). It should be noted

that the transformation function for positrons necessarily includes the contribution of

the two 511 keV annihilation γ’s; it will be labeled Ep(Ea,ΘE) to match the notation

used in Equation 2.2 for the energy of the prompt event in a νe coincidence pair. The

uncertainty in Ep(Ea,ΘE), propagated from the uncertainty in fit for Eγ(Ea,ΘE), at

Ep = 2.6 MeV is 2.4%.
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4.5 Muon Track Fitting

Not all events in KamLAND make point-like vertices whose positions and energies

can be reconstructed with the techniques described in Sections 4.3 and 4.4. A second

class of events are highly energetic particles that make scintillation tracks. This class

consists mostly of cosmic rays, or muons. These muons may activate the material they

traverse, producing radioactivity along their tracks that can mimic the coincidence

neutrino signal. Devoted algorithms were developed to reconstruct these muon tracks

so that these backgrounds could be efficiently removed.

4.5.1 Muon Tagging

Muons are identified primarily by their Cherenkov production in the OD or buffer

oil, or by the scintillation light they emit in the ID. Events registering at least 10 hits

in the OD are called “OD muons”, whereas events with significant ID activity are

labeled “ID muons”. ID muons are separated into two classes, LS and oil muons. LS

muons, which traverse the scintillator, are easily identified by their enormous light

yield. Oil muons are muons that pass through the buffer oil between the balloon

surface and the PMT’s, generating primarily Cherenkov radiation at a fraction of the

intensity of the LS muons. ID muons are identified and distinguished by their value

of npe (number of photoelectrons) in the ID. Figure 4.12 plots nsmxOD (the sum of

the individual values of nsmx for each OD section) vs. npe collected in the ID for a

typical day-long run. Clusters corresponding to OD, oil, and LS muons are labeled.

The cuts used to categorize these muon events are shown as solid lines; note that oil

and LS muons generating significant OD activity are classified as both OD and ID

muons. The efficiency for detecting an ID muon by the OD is 0.9931 ± 0.0004. The

inefficiency for tagging muons passing through the LS by their ID activity is assumed

to be negligible, owing to their large energy deposit.

Another subclassification involves LS muons creating more than 106 p.e., identified

by the sum of the charges over all pulses in the event, denoted Qtot (differences in the

Q0 are neglected for these high charge events). These events are tagged as “showering

muons”, since they are thought to be associated with muon-induced hadronic showers
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Figure 4.12: A plot of nsmxOD vs. npe collected in the ID for a typical day-long run,
with clusters corresponding to the three main muon classes labeled. The solid lines
show the cuts used to select each class. Note that oil and LS muons with nsmxOD

exceeding the OD muon threshold are also classified as OD muons.

in the LS, and therefore enhanced activation of the scintillator. These make up only

10.6% of LS muons but account for much of the muon induced backgrounds. A fifth

muon class describes anomalous events resulting from a bug in the early triggering

logic in which concurrent high activity in the ID and OD failed to issue a trigger signal

to collect ID waveforms. These events are easily identified as having high nsmxID

and no waveforms, and are treated as if they are showering muons by the analysis.

The selection criteria for the various muon classes referred to in this analysis are listed

in Table 4.1.

4.5.2 Track Reconstruction

Track reconstruction is attempted for all events with log10(Qtot) > 4.5. Like vertex

reconstruction, track reconstruction begins with a pre-fit to obtain a reasonable initial

guess at the track direction, followed by a more precise determination based on the

arrival times registered by each PMT. The second step is not performed for events
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Table 4.1: Muon Classification and Rates
Class Selection Rate
OD nsmxOD > 10 ∼0.65 Hz
LS log10(npe) > 4.8 0.2044± 0.0001 Hz

3.5 < log10(npe) ≤ 4.8
Oil AND 0.1259± 0.0001 Hz

[nsmxOD − 10 > 20(4− log10(npe)) OR log10(npe) > 4]
Showering log10(Qtot) > 7.2 0.0224± 0.0001 Hz

Missed nsmxID > 1250 AND no waveform data ¿ 1 Hz

which do not give a reasonable pre-fit.

The pre-fit is based on the empirical observation that muons create regions of

high light collection, called “wounds”, at their entrance and exit points. For an

example, see Figure 4.13, in which the PMT positions on the inside of the containment

vessel have been mapped to 2D using a Mollweide projection and have been colored

according to their charge. The entrance and exit wounds are identified by ignoring

all but the largest 10% of the pulses, sorting the remaining pulses according to their

times, and taking the average positions of the first and last 25 (or the first and last

half, if there are less than 25 pulses). Then charges more than 3 m beyond the wound

position are removed from consideration and the wound positions are recalculated.

For muons with Qtot < 2.5 × 106 (oil muons, roughly), the muon’s track direction is

set to point from the entrance wound to the exit wound. For higher charge muons

(LS muons), the entrance wound actually appears near the PMT’s pointed to by

the balloon-surface normal vector originating at the muon’s LS entrance point, since

Cherenkov light generated in the BO propagates primarily in the direction of the

muon and hence away from the tubes. The same is true for the exit point of an LS

muon since the wound analysis is restricted to tubes with the highest charges. Hence

pre-fits for LS muon tracks point between the projections of the entrance and exit

wounds onto the balloon surface.

The refinement of the track direction is based on a light transport model for

scintillating relativistic particles. A charged particle ionizing material in KamLAND’s

LS emits scintillation light isotropically. If the particle is non-relativistic or doesn’t
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Figure 4.13: PMT hits for a typical muon event showing entrance and exit wounds.
The PMT positions on the inside of the containment vessel have been mapped to 2D
using a Mollweide projection and have been been colored according to their charge.
The lower left and right panels show the charge- and time-distributions of the hits,
respectively. The smaller display in the upper-right corner shows the associated OD
activity using the same projection.
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Figure 4.14: Definitions of geometrical parameters for muon tracks.

travel very far, the wavefront of the scintillation light is a sphere centered on the

particle’s position, as is assumed for vertex fitting. However, if the particle is a

highly relativistic muon crossing the detector, the wavefront will form a wake behind

the particle, analogous to the Cherenkov cone, with the same opening angle θc given by

Equation 4.12. The first scintillation light arriving at a particular PMT from the muon

will have been generated at the first point p in the LS along the track whose difference

vector from the PMT position lies at angle θc relative to the muon track direction.

Referring to Figure 4.14 in which, for simplicity, the balloon is approximated as a

perfect sphere, let rin and rout be the muon’s entrance and exit points in the LS,

dµ = rout − rin be the track vector, rPMT be the position of the PMT in question,

and θ be the angle between dµ and dPMT = rPMT − rin. Writing p = rin + αdµ, α

may be calculated using the Law of Sines,

α(rin, rout) = max

(
0, min

(
1,

dPMT

dµ

sin(θc − θ)

sin θc

))
, (4.16)

where dPMT and dµ are the magnitudes of dPMT and dµ, respectively. α is written as

a function of rin and rout since once these two vectors are set, there is a unique value
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of α for each PMT. This suggests a procedure to find the most likely values of rin

and rout and the entrance time tin for LS muons: given the pre-fit guesses for rin and

rout, α is calculated, as is dγ = rPMT − p, the distance the scintillation light travels,

for each PMT. Next, with an estimate from the pre-fit for tin, the expected arrival

time of the earliest scintillation light at the ith PMT, t̃i, is calculated according to

t̃i = tin + αi
dµ

c
+ n

dγ,i

c
, (4.17)

where n is the measured refractive index of the LS. Differences between the refractive

indices of the LS and the buffer oil are ignored. The t̃i are compared to the T0-

subtracted arrival times ti of the earliest large pulse at each PMT, and from the

differences t̃i − ti the log-likelihood is constructed as

log L =
N∑

i=1

−(t̃i − ti)
2

2σ2
, (4.18)

where N is the number of hit 17-inch PMT’s, and σ = 2 ns is the error on the ti,

assumed to be gaussian and identical for all 17-inch PMT’s. The log-likelihood is

then maximized over the variation of rin, rout, and tin.

4.5.3 Performance

Unfortunately there is no unambiguous way to calibrate the muon track reconstruc-

tion. However, there are several ways to evaluate its performance. First, the zenith-

angle distribution of the reconstructed tracks may be compared to simulations of the

muon flux at KamLAND. Such a simulation was performed using the MUSIC software

toolkit [67] based on the sea-level muon flux and topographic data of Mt. Ikenoyama.

Figure 4.15 shows the comparison between data and Monte Carlo for azimuthal (φ)

and zenith (θ) angles. The agreement is quite good, with both data and MC showing

essentially the same features in each variable. The excess flux in the Western and

Southern directions in azimuthal angle, for example, corresponds to directions along

which the mountain is not as thick. Differences between data and MC are attributable
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Figure 4.15: Angular distribution of reconstructed muon tracks. The crosses are data,
the histogram is Monte Carlo. The peaks and valleys in the azimuthal angle (φ) are
due to variations in the rock depth in the different directions. Differences between the
two distributions are attributable to the resolution of the reconstruction algorithm.

to resolution effects.

Another sanity check tests whether the reconstructed muon flux is uniform across

the detector. This is done by checking for flatness in the distribution of impact param-

eter squared (b2) for the reconstructed tracks relative to the center of the detector.

This distribution is plotted in Figure 4.16, in which b has been normalized to the

balloon radius rball. There appears to be a problem near the edge of the balloon, as if

some oil muons are being systematically pushed into the LS. This is probably related

to the algorithm’s different treatment of events it assumes to be oil or LS muons,

an identification that is difficult to make for tracks that just graze the LS. The fact

that the track directions still agree well with MC implies that the misreconstruction

is likely an issue of shifted impact parameters.
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Figure 4.16: Distribution of reconstructed muon impact parameter squared. There
appears to be a problem near the balloon radius, which is likely due to simple shifts
in b.

4.6 Total Reconstruction Efficiency

It is possible that one of the steps in the event reconstruction will fail for some

anomalous events. For example, the location of an event with a strange pulse-time

distribution might be pushed far outside the detector volume, or a few spurious

large pulses might give an otherwise normal low-energy event an enormous energy.

A contribution must be included in the νe detection efficiency to account for the

probability that an event is reconstructed with approximately the right position and

energy.

The total reconstruction efficiency is obtained for physics events by counting the

fraction of calibration source γ events that survive reconstruction. The raw event

count is made by counting events during a source run with nsmxID within a certain

range, and subtracting off the background rate estimated in a normal physics run

using the same cuts on nsmxID. The reconstructed events are counted the same

way, except with cuts on energy and position to be near those of the source. The

reconstructed vertex is additionally required to have converged normally.

To cover the range of reactor νe energies, events from 68Ge, 60Co, and 241Am/9Be
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Table 4.2: Cuts for Evaluating the Total Reconstruction Efficiency

Source Trigger Cuts Energy Cut Position Cut
68Ge 160 ≤ nsmxID ≤ 300 0.5 MeV < Ea < 3 MeV |r− rsource| < 2 m
60Co 300 ≤ nsmxID ≤ 600 0.5 MeV < Ea < 6 MeV |r− rsource| < 2 m

241Am/9Be 600 ≤ nsmxID ≤ 1000 2 MeV < Ea < 13 MeV |r− rsource| < 3 m

calibrations are used. The cuts for each are listed in Table 4.2. The efficiencies

for 60Co and 241Am/9Be are 1.0006 ± 0.0002 and 0.998 ± 0.001, respectively. These

efficiencies showed no significant dependence on the z-position of the source in ques-

tion. The efficiency for 68Ge is 1.040 ± 0.005, although this value was found to be

highly sensitive to the background subtraction. The total reconstruction efficiency

is therefore taken to be the average of the 60Co and 241Am/9Be efficiencies, 99.9%,

with a 0.1% systematic error allotted to account for the difference between these two

measurements.



Chapter 5

Data Reduction

Data reduction refers to the process of sifting through the data in search of electron

antineutrinos. The first step in data reduction is to eliminate bad runs. Then anti-

neutrinos are identified as event-pairs that are correlated in time and space, and have

a delayed event energy consistent with that of a 2.2 MeV np-capture γ. A 5.5 m radius

spherical fiducial volume cut is applied to remove backgrounds near the surface of the

balloon. A series of spallation cuts are applied to remove cosmogenic backgrounds.

These cuts and their efficiencies are described in detail below.

5.1 Data Cleaning and Livetime Calculation

An entire run may be rejected for any of the following reasons:

• It is a testing/engineering or calibration run.

• There is an electronics failure or high-voltage problems, or the magnetic field-

canceling coils were off.

• The number of inactive or over-active channels is too high.

• The trigger rate or nsmx distribution is abnormal.

• Any of the muon rates are abnormal.

67
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• The accidental background rate (see Section 6.2) is abnormal.

• The OD hit rate or inefficiency is abnormal.

• The run is shorter than one hour, and the reason it was stopped is unknown.

• The operator taking the run requests in the log book that the run not be

analyzed.

When any of these problems can be limited to a short period during a run, only that

period is vetoed for analysis.

A period of a run may also be vetoed if it is found to be noisy. The two major

types of noise which must be addressed are post-muon noise, and periods of high

data rates not associated with muons. The former occurs in early runs during the

150 µs following events with very large npe. An electronics upgrade in January 2003

shortened the noisy period to 40 µs for subsequent runs. To remove these events, a 150

µs veto is applied after all LS and missed muons. Even after this veto is applied, some

noisy periods may still be found in the data. These periods are tagged as having more

than 5 analyzable events in a period of 6 ms (equivalent to a trigger rate of almost 1

kHz), and are removed via a cut on “multiplicity”, described in Section 5.2.

The livetime of un-vetoed periods is calculated simply by summing the time be-

tween the first and last trigger record in each clean period. The livetime calculation

was checked by counting 1PPS triggers issued by the GPS module throughout the

run. The two methods agreed to within one second per day. Livetime is subtracted for

“gaps” in the data, periods during which no trigger records are issued for more than

0.1 s, a symptom that the trigger module may have disabled itself due to data over-

flow or network problems. During standard operation, trigger records are recorded

at a rate of well over 100 Hz, so this subtraction wrongfully removes < 0.05% of

the livetime. Accounting for this uncertainty, the total livetime for this analysis is

484.75± 0.24 days.
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5.2 Event Pairing

In order to facilitate the application of cuts on pairs of events, a list is constructed of

all event pairs occurring within 1.5 ms of each other. The list is organized into “mul-

tiplets”, groups of sequential events in which the time difference between consecutive

events never exceeds 1.5 ms. In order for an event to appear in a multiplet, it must

have r < 6.5 m and Ea > 0.8 MeV. The noise cut mentioned in Section 5.1 is applied

by requiring that no multiplet have a multiplicity, or number of events, larger than

5. The correction to the livetime from this cut is of order 10−7 and is ignored.

5.3 Time Correlation

The neutron emitted in an inverse beta interaction quickly thermalizes and begins

a random walk through the scintillator. The probability of the neutron capturing

on a proton and producing the 2.2 MeV delayed γ event in any given instant is

constant. Therefore the probability of the capture occurring within dt of time t after

the emission of the neutron falls exponentially with time-constant τ :

P (t)dt =
1

τ
e−t/τdt. (5.1)

The efficiency of a cut on t is given by the integral of Equation 5.1 and therefore

depends on the value of τ .

The value of τ itself depends on the density-weighted sum of the cross-section

for the neutron to be captured on the various atoms that comprise the scintillator.

First-principle calculations of τ give values in the range 211 ± 5 µs. Monte Carlo

simulations of the neutron walk using the Geant4 software toolkit [68] give a mean τ

of 212± 2 µs.

Using data, τ was measured from both spallation neutrons following muons and
241Am/9Be calibration data. Spallation neutrons were selected using the same criteria

described in Section 4.4.2. Only runs prior to the electronics upgrade in January

2003 were used. The distribution of time-since-last muon for each event is plotted

in Figure 5.1. A fit to an exponential plus a constant background gave a capture
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Figure 5.1: Neutron capture time distribution measured from spallation neutrons.
The first 150 µs following a muon is vetoed due to electronics noise. The fit function,
shown as the solid line, is N0e

−t/τ + bg. The fit extends out to 100 ms (only the first
2 ms are shown).

time of τ = 207.8 ± 0.5 µs. 241Am/9Be calibration events were paired using the

same procedure to pair νe candidates, except that the coincidence time was allowed

to extend to 5 ms, and no cut was applied on multiplicity. The prompt event was

required to have Ea > 4 MeV, which selects neutron emissions accompanied by 4.44

MeV γ’s from 12C∗, and the delayed event was required to have an energy consistent

with a 2.2 MeV np-capture γ. Both prompt and delayed events were required to be

reconstructed within 3 m of the deployed source position. A fit of an exponential plus

constant background to the distribution of the times between the prompt and delayed

events gives a capture time τ = 203± 3 µs. The slightly faster capture time could be

due to the higher density of the neutron moderating material Delrin encapsulating

the source. The combined value of τ considering all measurements and calculations

is taken to be 208 ± 3 µs, where the error δτ accounts for the spread in the various

values obtained for τ .

Antineutrino candidates are required to have a time correlation 0.5 µs < ∆t <

660 µs. This variable is plotted in Figure 5.2 for the νe candidates after applying
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Figure 5.2: ∆t distribution of νe candidates. The distribution is fit to the function
N0e

−∆t/τ + bg. The fit value τ = 225 ± 25 µs is consistent with the measured value
of τ = 208± 3 µs.

all cuts except the time correlation cut. The efficiency of this cut is determined by

simply integrating the exponential capture time distribution,

ε∆t =

∫ t2

t1

1

τ
e−t/τdt. (5.2)

Since δτ
τ
¿ 1 and t1 ¿ τ < t2, the uncertainty of ε∆t due to δτ may be approximated

as

δε∆t ≈
∣∣∣∣
∂ε

∂τ

∣∣∣∣ δτ =

∣∣∣∣
t1
τ

e−t1/τ − t2
τ

e−t2/τ

∣∣∣∣
δτ

τ
. (5.3)

With t1 = 0.5 µs, t2 = 660 µs, and τ = 208 ± 3 µs, the efficiency is then ε∆t =

0.9557± 0.0019.

5.4 Space Correlation

Perhaps the most powerful cut for reducing backgrounds after the time correlation

cut is the requirement that the prompt and delayed events occur within 1.6 m of
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Figure 5.3: ∆r distribution of νe candidates. Candidates are required to have
∆r < 1.6 m. The increase in the distribution beyond the cut is due to acciden-
tal backgrounds.

each other. The distance ∆r between the prompt and delayed events is plotted for

the νe candidates in Figure 5.3, with the cut depicted by the vertical solid line. The

increasing distribution outside of the cut is due to accidental backgrounds.

To obtain the efficiency of the cut, it is necessary to investigate the effects that

determine the spacial correlation of the prompt and delayed events. One component

is the neutron’s random walk at thermal energies. Geant4 Monte Carlo simulations

indicate that neutrons are captured on average within 9 cm of the interaction vertex.

The absorption length of the 2.2 MeV γ and the vertex reconstruction resolution

further smear out the distribution of ∆r, the distance between the prompt and delayed

events.

The radial distribution of γ calibration source events were found to be nicely

fit by an exponential absorption convolved with a gaussian resolution. The apparent

absorption lengths and resolutions for the various sources are summarized in Table 5.1.

As expected, the absorption length is longer for higher energy γ’s, and the resolution

improves with the greater light yield. The absorption lengths for 68Ge and 60Co are
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Table 5.1: Absorption Lengths and Vertex Resolutions of Calibration Sources

Source Energy [MeV] Absorption Length [mm] Resolution [mm]
68Ge 1.022 94.5 173.1
65Zn 1.116 157.9 158.7
241Am/9Be 2.223 206.3 146.9
60Co 2.506 89.3 136.6
241Am/9Be 4.5 251.9 119.0

much smaller than the others since these sources emit two γ’s in different directions,

while the other source events consist of only a single γ.

A 68Ge source event may be taken to be representative of the prompt event from

a νe interaction with energy just at or the threshold for inverse β-decay. For higher

energy νe events, the apparent absorption length is shorter because the positron

deposits its energy much closer to the prompt vertex than the annihilation γ’s. Thus

the radial spread of the 68Ge source event distribution may be taken to be an upper

limit on that of the νe candidates. This distribution is shown as the dashed histogram

in Figure 5.4. The delayed event of a candidate, on the other hand, is mimicked by a

2.2 MeV 241Am/9Be neutron capture event. The distribution of these events is shown

as the dotted histogram in Figure 5.4.

The distribution of the distances ∆r between candidate events was approximated

by simulating the prompt and delayed radii based on the 68Ge and 241Am/9Be event

distributions. The angle θ between the events was generated with a flat distribution

in cos θ. The simulated ∆r distribution is shown as the solid curve in Figure 5.4.

Since the 68Ge distribution gives a maximal absorption length for the prompt event,

the fraction of simulated events falling within 1.6 m of each other represents an

upper limit on the efficiency of the ∆r cut for νe candidates. A lower limit can

be obtained by taking the prompt event to have no smearing, or in other words by

integrating the 241Am/9Be ∆r distribution below 1.6 m. In this way, an efficiency of

ε∆r = 0.990± 0.002 is obtained.
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Figure 5.4: ∆r distributions of 68Ge (dashed histogram) and 241Am/9Be 2.2 MeV
(dotted histogram) source events (relative to the source position). These are used to
simulate the ∆r distribution of νe’s, shown as the solid curve. Upper and lower limits
on ε∆r are obtained from the fraction of events within 1.6 m for 241Am/9Be (99.2%)
and MC (98.8%), respectively.
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Figure 5.5: Ed distribution of the νe candidates. Candidates are required to have 1.54
MeV < Ed < 2.64 MeV. The non-gaussian tail at lower energies is due to ATWD
dead time.

5.5 Delayed Energy Cut

The delayed event in a νe-candidate pair is required to have an energy Ed = Eγ(Ea)

consistent with a 2.2 MeV np-capture γ via the cut 1.54 MeV < Ed < 2.64 MeV.

The distribution of Ed for the candidate pairs is plotted in Figure 5.5, with the cuts

drawn as the solid lines. The np-capture γ peak of the candidates is non-gaussian in

its lower tail. This is due to ATWD dead time when the time ∆t between the events

is less than 30 µs. During this time, a fraction of ATWD’s involved in digitizing the

prompt event are unavailable to record new pulses from the delayed event, resulting

in a downward bias in the energy reconstruction. This bias can be clearly seen when

the the delayed energy of the candidates is plotted versus ∆t, as shown in Figure 5.6.

The efficiency of the delayed energy cut is evaluated from the energy distribution

of 2.2 MeV np-capture γ’s in 241Am/9Be calibration source data. As in Section 5.3,

the 241Am/9Be events are grouped into multiplets, except with the time correlation

condition relaxed to ∆t < 5 ms for precise background assessment. Both events are

required to fit to within 2 m of the source position, and a coincidence pair is required



76 CHAPTER 5. DATA REDUCTION

s]µt [∆
0 200 400 600 800 1000 1200 1400

 [
M

eV
]

d
E

0

1

2

3

4

5

6

Figure 5.6: Ed versus ∆t for the νe candidates. ATWD dead time for ∆t < 30 µs
results in a ∼10% downward shift in Ed.

to have 0.5 µs < ∆t < 660 µs. A background window with 2 ms < ∆t < 5 ms

measures the rate of pairs in which both prompt and delayed events are np-capture

γ’s. The background-subtracted prompt energy distribution is shown in Figure 5.7,

and shows a low energy hump due to thermalization of the emitted neutrons, and a

second peak at higher energy due to the concurrent emission of a 4.44 MeV γ from
12C∗. Figure 5.8 shows the delayed energy distribution in the region of the 2.2 MeV

np-capture γ peak for prompt energies with Ea > 4 MeV (solid histogram), and for

Ea < 4 MeV (dashed histogram). The peak shows the same tail due to the energy

bias at small ∆t as the νe candidates, which is more prominent when the prompt

event energy is large. The solid lines show the position of the delayed energy cuts in

the analysis energy range. Its efficiency is measured to be 0.9925±0.0006 by counting

the fraction of 241Am/9Be events selected. The uncertainty includes a contribution

from the difference in efficiencies for low and high energy prompt events. Since the

small-∆t energy bias is worse for events at high radius, an additional 0.6% uncertainty

is applied due to the difference in 241Am/9Be source data taken at z = +5.5 m.

An additional correction must be made to account for neutrons captured on carbon
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Figure 5.7: 241Am/9Be prompt energy distribution. Events below 1 MeV are removed
by an analysis cut.
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Figure 5.8: Ea distribution of 241Am/9Be np-capture γ’s. The solid line is for event
pairs with prompt energy > 4 MeV; the dashed line is for prompt energy < 4 MeV.
The non-gaussian smearing in the lower tail is more prominent for higher energy
prompt events. The νe delayed energy limits have been converted to the analysis
energy scale and are drawn as solid lines.



78 CHAPTER 5. DATA REDUCTION

nuclei in the scintillator, rather than on protons. Capture on 12C, with cross-section

3.53 ± 0.07 mb, emits a 4.95 MeV γ; capture on 13C, with cross-section 0.00137 ±
0.00004 mb, emits an 8.17 MeV γ [69]. Both of these are rejected by the delayed energy

cut. The cross-section for capture on a proton is much larger, 0.3326± 0.0007 b [69].

Using a carbon-to-hydrogen ratio of 1:1.969 for the LS and accounting for the natural

abundance of 13C, the efficiency for capture on a proton is 0.9947±0.0001. Combining

this with the efficiency for detection of the np-capture γ, the total efficiency of the

delayed energy cut is εEd
= 0.987± 0.004.

5.6 Fiducial Volume Cut

While νe events are distributed uniformly throughout the detector, accidental back-

grounds are concentrated near the balloon surface, where the rate of events from

balloon contaminants and external radioactivity is high. This excess is illustrated

by the bright regions and the rim at the balloon radius in the singles event distribu-

tion, Figure 4.5. In order to remove the regions of high backgrounds at large radius

from the analysis, a fiducial volume cut is applied in which νe candidate-pairs are

required to have an average radius r̄ less than rfid = 5.5 m. The inefficiency of this

cut for νe interactions with protons inside of rfid is negligible: if the event spacing

and vertex resolution are much smaller than rfid, and if the vertex resolution does not

vary appreciably across rfid, then the efficiency of an event pair generated at distance

d ¿ rfid inside the cut is approximately equal to 1 minus the efficiency for an event

pair occurring a distance d beyond the cut. Moreover, by cutting on the average

radius, orthogonality with ∆r guarantees no correlation with the spacial correlation

cut. Figure 5.9 plots z̄ versus ρ̄2 for νe candidate pairs. The plot is limited to νe

candidates with average spherical radius within 6.5 m. The solid curve denotes the

position of the fiducial volume cut.

Geometrically, the size of the fiducial volume, which is multiplied by the scintil-

lator’s proton density to give the number of target protons (np in Equation 2.3), is

given by V geo
fid = 4

3
πr3

fid. Unfortunately, z-axis calibrations of the vertex reconstruc-

tion give insufficient information on the uncertainty of off-axis positions to assess the
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Figure 5.9: Distribution of ρ̄2 vs. z̄ for νe candidates. A cut has been applied requiring
r̄ < 6.5 m. The solid curve is the fiducial volume cut, r̄ < 5.5 m. The cluster of events
at ρ̄ = rball, z = 0 mm is mostly accidental backgrounds; this is the region of the ID
that is closest to the cylindrical cavern wall.

error on rfid and hence V geo
fid . So instead of using the geometrical formula, the fidu-

cial volume size is measured from the uniformity of the reconstructed distributions of

muon-spallation events.

If one may assume that the variation of the differential muon flux, dφµ(E,r)

dE
, over

all ID positions r is negligible, then the spallation rate at all r inside the LS may be

taken to be a constant. Additionally, the validity of this assumption requires that

the difference in spallation production rates between the LS and BO be negligible,

that production in the balloon material and the Kevlar ropes may be neglected, and

that the BO be large enough to shield the LS from enhanced production rates in

the denser materials in the surrounding detector components. Uniform spallation

events should yield a step-function distribution in r3 that is flat inside the LS and

drops to zero outside. The sharpness of the step function will be affected by the

non-zero inefficiency/efficiency for detecting events just inside/outside the balloon

(respectively), and by the resolution of the vertex reconstruction. Events in the

chimney region will also contribute to finite levels beyond the 6.5 m balloon radius.
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If rfid is well inside the balloon away from the roll-off, and if inefficiencies near

the balloon radius and in the chimney region can be neglected, then one may obtain

the fractional size of the fiducial volume f relative to the entire LS volume VLS by

taking the ratio of spallation events with r < rfid to the total number of spallation

events detected. Then the fiducial volume Vfid is given simply by Vfid = fVLS. The

error on the fiducial volume is obtained by propagating the errors on VLS and f .

One class of uniform spallation events used to evaluate f and its error includes

the β-decays of 12B, with Q = 13.4 MeV and a half life of 20.2 ms, and of 12N, with

Q = 17.3 MeV and a half life of 11.0 ms. An event is tagged as a 12B/12N candidate

if it has analysis energy in the range 6 MeV < Ea < 20 MeV, nsmxID > 500,

nsmxOD < 5, and log10(Qtot) < 5.5. The latter two requirements ensure that the
12B/12N event is not itself a muon. It is also required that the time-since-last-muon

∆tµ of the 12B/12N candidates obeys 2 ms < ∆tµ < 52 ms, where a muon in this case is

defined as an event having (log10(Qtot) > 6) OR (nsmxID > 600 AND nsmxOD > 10)

(this historical selection criteria essentially selects ID muons). The background for

the 12B/12N candidates is measured with a time window of 300 ms < ∆tµ < 500

ms; the time between muons is required to be at least 500 ms to ensure that the

background subtraction is valid.

The distribution of r3 for the 12B/12N events is histogrammed in Figure 5.10.

To within statistical errors, the distribution is flat inside the LS, and it exhibits the

expected roll-off at the balloon radius. The solid line in the figure marks the location

of the fiducial volume cut, well inside the balloon before the onset of balloon surface

complications. The fraction of events falling inside the cut is f = 0.558± 0.022.

To test the assumption of uniformity, f is recalculated after removing events

following oil muons. This preferentially removes events occurring near the balloon

surface, purposefully making the distribution non-uniform. The value of f changes

by only 1.7%; this deviation is added in quadrature to the error on f .

The energies of the 12B/12N events are significantly higher than typical reactor

νe events. It is possible that the vertex reconstruction algorithm exhibits different

behavior at such higher energies, and the error on f should reflect this uncertainty.

To obtain a limit on the high energy reconstruction bias, we turn to the position
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Figure 5.10: r3 distribution of 12B/12N candidates. The solid line shows the position
of the fiducial volume cut. The fraction of events reconstructed inside the fiducial
volume, including the systematics described in the text, is f = 0.577± 0.034.

reconstruction of the prompt and delayed events of the spallation-produced delayed

neutron β-decays of 9Li (Q = 13.6 MeV, τ1/2 = 178 ms) and 8He (Q = 10.7 MeV,

τ1/2 = 119 ms. These events, which mimic the νe signal (see Section 6.3.2), are selected

as νe candidates occurring within 2 s following a showering muon, or within 2 s and 3 m

of a well-tracked LS muon. This selection naturally contains a small contamination

of νe candidates, which are mostly removed by requiring that the 9Li/8He events, like

the 12B/12N candidates, have prompt energy Ea > 6 MeV. The fiducial volume cut

is not applied. If there is a relative radial bias for high-energy events near rfid, then

it may be found by comparing the radii rp and rd of the prompt and delayed event in
9Li/8He candidate pairs. Figure 5.11 plots rp−rd versus the average radius r̄ = |rp+rd|

2
.

Events within 50 cm (approximately twice the vertex resolution) to either side of the

fiducial volume boundary are selected, and the distribution of rp− rd for these events

is histogrammed and fit to a gaussian in Figure 5.12. The gaussian gives an outward

bias of 6.2±3.7 cm for high energy events, amounting to a 3.4% bias in f as measured

by the 12B/12N events. Correcting f for this bias, and including both the size of the
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Figure 5.11: Prompt and delayed event radial difference vs. r̄3 for 9Li/8He candidates
above 6 MeV.

correction and its statistical error in the uncertainty, gives f = 0.577± 0.034.

Another uniform source that may potentially be used to measure f is spallation

neutrons. Unfortunately, post-muon ringing in the electronics followed by bursts

of neutron captures compounds the ATWD dead time problems referred to in Sec-

tion 5.5, and it is unclear exactly what sort of bias the dead ATWD’s have on the

vertex reconstruction. While it is easy to find which events are missing waveforms

by comparing the number of ATWD’s registering hits with nsmxID, these events

cannot be simply removed from the data: muons passing through the center of the

detector have longer path lengths through the LS, creating more light and more dead

time problems. Hence applying cuts to remove events with missing waveforms pref-

erentially removes events near the center of the detector, ruining the uniformity of

the distribution essential to the fiducial volume ratio measurement. However, one

can simply choose neutrons captured at very long times following the muon, after

the electronics have had a chance to recover. Unfortunately, events with missing

waveforms are found more than a millisecond following a muon, albeit in decreasing

numbers. Removing the first millisecond of neutron captures results in a dramatic
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Figure 5.12: Prompt and delayed event radial difference for 9Li/8He events with r̄
within 50 cm of rfid. A slightly positive average indicates that high energy events are
reconstructed with slightly larger radius relative to 2.2 MeV np-capture γ’s.

loss of signal. In particular, the signal-to-background ratio near the balloon surface

becomes much less than one. Moreover, the loss of signal makes it difficult to deter-

mine how much the residual ATWD dead time affects the reconstruction. For these

reasons, the measurement with the spallation neutrons is considered as a verification

of the measurement with the 12B/12N candidates. The spallation neutron candidates

are required to have nsmxID > 250 and to have 1 ms < ∆tµ < 2 ms (the muon

definition is the same as for the 12B/12N candidates). The background window is

chosen as 2 ms < ∆tµ < 102 ms. The background-subtracted r3 distribution is shown

in Figure 5.13. The small signal-to-background ratio appears as large uncertainties

near r = rball. The fiducial volume ratio for these events is f = 0.569 ± 0.024, in

good agreement with the 12B/12N measurement. Removing the contribution from oil

muons changes f by 1.2%.

VLS was measured during detector filling using flow meters on the input pipes for

the LS and BO. A secondary measurement obtained VLS by integrating fluid levels in

1 m3 tanks also employed during oil filling. A third method determined VLS from a
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Figure 5.13: r3 distribution of spallation neutrons. Errors near rball are large due to
an extremely small signal-to-background ratio. ATWD dead time also inhibits proper
interpretation of the distribution. The solid line shows the position of the fiducial
volume cut. The fiducial volume fraction, including the uniformity systematic, is
f = 0.569± 0.025.

calculation of the full volume of fluid inside the containment vessel multiplied by the

ratio of flow meter measurements for the LS and BO, which pushes to second order

many of the systematics related to the flow meter measurements. The three methods

give consistent values for VLS, and combined give a volume 1171± 25 m3.

Combining VLS and f gives a fiducial volume size of 676 ± 42 m3. As discussed

in Chapter 3, the scintillator has proton number density (6.611± 0.007)× 1028 m−3.

This gives a total of np = (4.47 ± 0.28) × 1031 target protons for the reactor νe

measurement.

5.7 Spallation Cuts

Muons crossing the detector leave in their wake spallation fragments, including neu-

trons and longer-lived isotopes such as 8He and 9Li that may mimic the νe signal

[70]. The spallation backgrounds within the reactor νe energy range will be described

in detail in Chapter 6. In anticipation of these backgrounds, the selection criteria
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imposed to remove them are discussed here.

It is beneficial to veto the full detector for a short period after a muon passes to

remove the short lived backgrounds, in particular the copiously produced spallation

neutrons. Extending these full-detector vetoes to longer times to remove long-life

isotopes would dramatically reduce the livetime for the νe measurement. Detector

livetime may be salvaged while still retaining a high efficiency to remove long-life

spallation products by vetoing for an extended period only along the muon’s track.

When a muon’s track can not be reconstructed, or when muons create showering

events that generate high levels of activity, the whole detector must be vetoed. It is

also prudent to apply such a veto at the start of a run and after gaps. The specific

spallation cuts used in this analysis are as follows:

• Veto the full detector for 2 ms following any muon.

• For LS muons whose track could be fit (see Section 4.5), veto a 3 m radius

cylinder around the track for 2 s.

• For showering muons, LS muons with poorly reconstructed tracks, and following

run starts and gaps, veto the full detector for 2 s.

The small backgrounds remaining after these selection criteria are applied will be

discussed in Chapter 6. Since these cuts are in essence detector vetoes, their affect

on the νe measurement is treated as a correction to the livetime and fiducial volume

rather than an efficiency. The dead time introduced by the first and third cuts is sim-

ple to calculate by summing vetoed periods following muons. However, the cylindrical

cuts veto only a section of the fiducial volume for a short time, reducing the total

exposure (volume times time) by an amount that depends on the impact parameter

of the muon track. The dead time and exposure loss of all three cuts is calculated

using a Monte Carlo method in which events are randomly distributed throughout

each run, with a uniform position distribution throughout the 5.5 m radius fiducial

volume. The actual muons in the run are used to calculate the fraction of Monte

Carlo events not removed by the spallation cuts. This live-fraction is then treated as

a livetime correction for the run from which it was calculated. The uncertainty in
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Figure 5.14: Live-fraction distribution, weighted by livetime, for all runs in the data
set reported here. The group of runs with lower live-fractions are due to lower muon
tracking efficiencies resulting from an early ATWD launch setting described in Chap-
ter 3.

the calculation depends essentially on the statistics of the Monte Carlo and is neg-

ligible. The live-fraction distribution for the runs used in this analysis is plotted in

Figure 5.14. The cluster of runs with lower live-fraction are early runs with lower

muon tracking efficiency due to the ATWD launch setting described in Chapter 3.

The weighted average live-fraction for this data set is 85.53%. Multiplying the live-

fractions of each run by its livetime, calculated as described in Section 5.1, gives a

total effective livetime of 414.6±0.2 days. Multiplying by the 527 ton fiducial volume

mass gives a total exposure of 599 ton-years.

5.8 Prompt Energy Analysis Threshold

One final cut requires νe’s to have a prompt energy above 2.6 MeV and less than 8.5

MeV. As discussed in the Chapter 6, this cut eliminates most accidental backgrounds

and virtually all potential non-reactor νe backgrounds. The distribution of delayed

versus prompt event energies for the νe candidates is shown in Figure 5.15. The
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Figure 5.15: Prompt and delayed energies of νe candidates. Events at low energies
are mostly accidental backgrounds, which are discussed in Chapter 6. The two events
with Ed ≈ 5 MeV are most likely due to neutron captures on 12C.

energies have been corrected with the appropriate conversion functions, Ep(Ea) for

the prompt event and Eγ(Ea) for the delayed event. The cuts are drawn as solid

lines. The event pairing step described in Section 5.2 imposes an implicit cut of

Ea > 0.8 MeV in the Figure. The contamination from accidental backgrounds at low

energies can be clearly seen. Above 2.6 MeV, the νe events show a clean separation

from the accidentals. The two events with Ed ≈ 4.5-5 MeV are most likely due to

neutron captures on 12C. The prompt event energy distribution is presented later in

Figure 8.2.

5.9 Total νe Detection Efficiency

The total νe detection efficiency is the product of the triggering efficiency, the recon-

struction efficiency, and the efficiencies of the νe selection criteria described above

(except for the spallation cut correction, which is applied to the livetime). The trig-

gering efficiency is the only of these with significant energy dependence; it is obtained
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Figure 5.16: Efficiency of the trigger nsmx > 200 versus analysis energy. The effi-
ciency above 1 MeV is ∼1.

Table 5.2: νe Detection Efficiency

Triggering efficiency (nsmxID > 200) ∼1
Reconstruction efficiency 0.999± 0.001
Time correlation (0.5µs < ∆t < 660µs) 0.956± 0.002
Space correlation (∆r < 1.6 m) 0.990± 0.002
Delayed energy cut (1.54 MeV < Ed < 2.64 MeV) 0.987± 0.004
Fiducial volume cut (r < 5.5 m) ∼1
Total 0.933± 0.004

from special low-threshold runs by dividing the total number of events within the

fiducial volume at a particular energy by the number with nsmx > 200. Figure 5.16

plots the triggering efficiency versus analysis energy. As can be seen, the energy de-

pendence is confined to energies below 1 MeV, and the efficiency above Ep 2.6 MeV

is ∼1. The parameter ε(Eνe) in Equation 2.3 is therefore taken to be a constant over

the energy range of interest and may be moved outside the integral. The various

contributions to ε and their uncertainties are listed in Table 5.2. The full νe detection

efficiency is 0.933± 0.004.



Chapter 6

Backgrounds

The selection criteria described in Chapter 5 are tuned to select reactor νe events with

as high efficiency as possible, and as little as possible of anything else. The back-

grounds which nevertheless survive the selection criteria fall into three categories.

The first is νe’s not emitted by known reactors. The next category is accidental back-

grounds, pairs of single events which randomly happen to pass the selection criteria.

The final category are non-νe correlated backgrounds which produce a prompt-delayed

coincidence pair with some efficiency for passing the νe selection criteria. The candi-

date backgrounds for each category and their expected rates are discussed below.

6.1 νe Backgrounds

6.1.1 Man-made νe Sources

Potential man-made νe background sources include nuclear material or reactors that

are not accounted for in the signal estimation presented in Chapter 7. In particular,

the estimation ignores contributions from spent nuclear fuel stored in Japan, and

naval reactors approaching KamLAND.

Nuclear fuel continues to emit a significant amount of νe’s for years after being

processed in a reactor [71]. The accumulation of spent nuclear fuel over many years

of reactor operations pose a potential background to reactor νe studies. However, the

89
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highest energy decay from spent fuel has a Q of 3.5 MeV. The contribution of spent

fuel νe’s above the 2.6 MeV prompt energy threshold is very small, and hence this

background may be ignored in this analysis.

The operation of naval reactors on board nuclear-powered vessels such as sub-

marines or aircraft carriers is classified, as are typically their positions. There is no

consistent way to include these reactors in the signal estimation. However, given the

size of these reactors, it has been shown that they are only a problem for KamLAND

if a vessel enters Toyama Bay (the closest body of water to the detector) and remains

there for an extended period [72]. A multi-reactor aircraft carrier in Toyama Bay

would draw much attention, and its period of stay could be easily vetoed in the data.

A submarine may go unnoticed, and would comprise up to 10% of KamLAND’s signal

if it were to remain stationary, running its reactors at full power. It is assumed that

this is an unreasonable mode of operation for military vessels, and this background

is hence ignored.

6.1.2 Geological νe Sources

There are two potential significant geological antineutrino backgrounds: “geo-neutrinos”

[54], and νe’s emitted by a hypothetical “geo-reactor” at the Earth’s core [73]. Geo-

neutrinos are νe’s emitted in the decay chain of uranium and thorium deposits

throughout the Earth. The geo-neutrino spectrum extends up to energies of Eνe =

3.3 MeV (see Figure 6.1), with some geological models predicting tens of νe’s per

1032 protons yr for 100% efficiency (see, for example, [74]). The 2.6 MeV threshold

imposed on the prompt events eliminates this background for the reactor νe analysis

presented here (this is, in fact, the purpose of the threshold). As KamLAND stands

to be the first experiment to detect geo-neutrinos, data below the threshold are not

presented in anticipation of a future analysis of νe energies in the geo-neutrino range.

A geo-reactor would have a νe spectrum indistinguishable from that produced

by man-made reactors. However, while the signal from Japanese reactors varies in

time as reactors are turned off and on (see Figure 7.4), a geo-reactor should give
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Figure 6.1: Prompt energy spectrum of geo-neutrino backgrounds. The normalization
of each spectrum is arbitrary. The number of events above the 2.6 MeV analysis
threshold is negligible.

a constant rate. The expected background at KamLAND for a typical 3 TWth geo-

reactor is only ∼5 events over the data taking period reported here, much smaller than

the Japanese reactor νe flux and on the same order as other backgrounds discussed

in this chapter. This background is addressed with a time-variation analysis (see

Section 8.2), but since the existence of the geo-reactor has not been experimentally

verified, its potential contribution is otherwise ignored.

6.1.3 Cosmic νe Sources

The first extraterrestrial sources of νe’s to be discussed are the sun and cosmic

rays which are the sources of solar and atmospheric neutrino oscillation experiments.

Other sources include supernovae, with close supernovae producing event bursts and

far supernovae producing supernova relic neutrinos [75], and the cosmic neutrino

background [14]. However, both supernova relic neutrinos and the cosmic neutrino

background give rates too low to be detected or νe energies far above the reactor

νe range, and an event burst from a near-by supernova, should KamLAND be lucky



92 CHAPTER 6. BACKGROUNDS

enough to detect one, could easily be vetoed from the reactor νe analysis.

The conventional reactions that fuel the sun produce only neutrinos, but uncon-

ventional reactions such as spin-flavor precession and neutrino decay [14] may convert

the neutrinos into antineutrinos that may pose a background for reactor νe studies. A

search for νe’s from the sun has been performed with KamLAND in the energy range

8.3 MeV < Eνe < 14.8 MeV [53]. No candidates were observed for an expected back-

ground of 1.1± 0.4 events. Assuming that the νe spectral shape follows the standard

solar 8B spectrum [76], this limits the νe flux to be less than 3.7 × 102 cm−2 s−1 at

the 90% confidence level. Since solar νe’s have never been observed, this background

is ignored in this analysis.

Unlike the sun, the cosmic rays that generate the atmospheric neutrino signal also

produce νe’s via reactions like µ− → e−+νe +νµ. The flux of atmospheric νe’s at the

Kamioka site has been measured above 50 MeV in [77]; the flux decreases for lower

energies. Taking the flux above 50 MeV as a conservative upper limit, the expected

atmospheric νe rate at KamLAND is some 6 orders of magnitude below the reactor

signal. This background may therefore also be safely ignored.

6.2 Accidental Backgrounds

The accidental background is comprised of pairs of single events that randomly pass

the νe selection criteria. For example, two 2.6 MeV γ’s from decays of 208Tl occurring

within 660 µs and 1.6 m of each other will look very much like a νe. As shown in

Figures 4.5 and 4.9, the accidental background rate is highest at low prompt energies

and near the balloon edge, where event rates due to radioactivity are highest. Most

of these are removed by the fiducial volume and prompt energy cuts.

The ∆t distribution for the candidates after all cuts have been applied, Figure 5.2,

consists of an exponential neutron capture time distribution on top of an approxi-

mately flat background. A flat background suggests either correlated event pairs with

a very long time constant, or events with no time correlation at all. The latter com-

prise the residual accidental background whose rate we want to measure. Assuming

that the former make up a negligible fraction of the flat background, the accidental
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Figure 6.2: Analysis energy distribution of accidental background events. The inte-
grated rate above Ep = 2.6 MeV is 0.0081± 0.0001 events per day.

background rate is obtained by applying the usual selection criteria except changing

the time-correlation cut to a later, or “off-time”, window. The analysis energy dis-

tribution of events selected with the off-time window 0.01 s < ∆t < 20 s is shown

in Figure 6.2. This method gives a total accidental background rate for Ep > 2.6

MeV of 0.0081 ± 0.0001 events per day. The total expected accidental background

count for the data period reported here is obtained by multiplying by the livetime

uncorrected for spallation cuts (since those cuts are already applied to the accidental

candidates), giving a total of 3.91± 0.05 events.

6.3 Correlated Non-νe Backgrounds

In addition to the νe backgrounds described in Section 6.1, there are several classes

of correlated events with non-zero efficiency to pass the νe selection criteria. The

most problematic interactions are those with a neutron in the final state, since they

will automatically create event pairs mimicking a νe. Such interactions may occur

from natural radioactivity in the detector, or may be induced by muon spallation. In
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regard to natural radioactivity, background levels were assessed for (α, n) reactions,

(γ, n) reactions, spontaneous fission, neutron emission, and short-life nuclei. Of these,

only the reaction 13C(α, n)16O is significant. The muon-induced backgrounds are

pushed to very low levels thanks to KamLAND’s 2700 m.w.e. overburden and the

spallation cuts described in Section 5.7. Short-lived spallation products, such as the

copiously-produced spallation neutrons, are removed with high efficiency by the 2

ms spallation cut following all muons. Still, untagged muons or long-life spallation

products may pose non-ignorable backgrounds [70]. Of all possible nuclei that may

be spalled from the elements composing KamLAND’s LS, the only three that pose a

threat for KamLAND are 9Li, 8He, and fast neutrons. The backgrounds from these

and the 13C(α, n)16O reaction are discussed in the following sections.

6.3.1 Backgrounds from 13C(α, n)16O

The primary source of α’s in KamLAND’s scintillator is decays of the radon daughter
210Po. When it does not interact with 13C, the 5.304 MeV α emitted in the decay of
210Po is quenched by a factor of ∼13, well below the triggering threshold. The rate

of these decays in the fiducial volume is obtained from special runs with very low

nsumID thresholds in which no waveforms were collected. As shown in Figure 6.3,

the α-peak appears at nsmxID ≈ 80, and is fit nicely by a gaussian plus a linear

background. For early runs, 5.490 MeV α’s from decays of 222Rn also appear in this

peak. To disentangle the 210Po events from the 222Rn and to obtain the time variation

of their rates, the 210Po α-peak height was measured for several low-threshold runs

throughout the data taking period. The peak heights are plotted versus time since

detector filling as the solid points in Figure 6.4. Under the assumptions that all of

the 210Po comes from 210Pb, and that levels of 222Rn have been decaying in time t

since the end of detector filling, the height of the peak, APo+Rn, is fit to the function

APo+Rn(t) = ARne−λRnt + APoλBiλPo

[
e−λPbt

(λBi − λPb)(λPo − λPb)
+

e−λBit

(λPb − λBi)(λPo − λBi)
+

e−λPot

(λPb − λPo)(λBi − λPo)

]
, (6.1)
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Figure 6.3: 210Po/222Rn quenched α decay peak in the nsmxID distribution of low-
threshold data. The peak fits nicely to a gaussian plus a linear background.

where λRn, λBi, λPo, and λPb are the decay constants for 222Rn, 210Bi, 210Po, and
210Pb, respectively, and ARn and APo are the fit parameters. The production and

decay of the various isotopes involved in the fit are plotted as solid lines in the figure.

The beginning of data taking occurs after the 222Rn line falls to zero so the α rate is

assumed to be due entirely to decays of 210Po.

The activity obtained from Figure 6.4 gives the 210Po decay rate throughout the

entire LS. A correction must be made to obtain the activity within the fiducial volume

only. To do this, pre-scaled waveform data taken during a special low threshold run

were reconstructed. The events were divided according to their position into spherical

shells, and the 210Po rate in each shell was determined again from its nsmxID peak.

The results are plotted in Figure 6.5, in which an excess at the balloon surface can be

seen. The biases in the vertex fitting at such low energies were limited to less than 1 m

from comparisons of prompt and delayed event vertices in 212Bi-212Po coincidences.

Combining the position information with the total rate determined by the fit to

Equation 6.1, the total 210Po rate in the fiducial volume was determined to be 33± 3

Bq.



96 CHAPTER 6. BACKGROUNDS

Time from 9/1/2001 [days]

0 200 400 600 800 1000

A
ct

iv
it

y 
[B

q
]

600

500

400

300

200

100

0

Pb

Bi
Po

Rn

Measured Rate

Rn + Po

Figure 6.4: Variation in time of the height of the 210Po/222Rn peak in the nsmxID

distribution (Figure 6.3). The dashed green line is the result of a fit to Equation 6.1,
while the other lines denote the production/decay of the various isotopes involved in
the fit. The 222Rn decays away before the start of data taking.

Figure 6.5: Reconstructed radial distribution of 210Po events. The rate is relatively
constant throughout the fiducial volume, with a slight excess at the balloon surface.
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The 13C(α, n)16O reaction has a Q of 2.216 MeV. The prompt event in a 13C(α, n)16O

background event consists of any scintillation produced by the incident alpha prior

to the interaction, along with scintillation of recoil protons involved in thermaliza-

tion of the neutron in the final state. If the neutron energy is high enough, it may

excite an atom of 12C during thermalization, emitting a 4.4 MeV γ. If the incident

α does not lose too much energy before interacting with the 13C, the 16O may be

left in its first or second excited states 16O∗, releasing 6.049 MeV or 6.130 MeV in

γ’s, respectively. The full 13C(α, n)16O spectrum was determined from Geant4 [68]

Monte Carlo simulations using cross-section data from [78]. The alpha particle was

tracked to its interaction energy, and its energy deposition was quenched using the

Birks constant determined in Section 4.4.4. The angular distribution of the outgoing

neutron was simulated using the Legendre polynomial coefficients given in [79]. Then

the neutron was passed back to Geant4 for tracking and quenching was again applied

to the recoil protons. Since data exist only for quenching of α’s (i.e. from 212Po and
214Po), the uncertainty in the quenching factor for protons is estimated to be 10%.

The prompt energy spectrum is then normalized according to the 210Po rate, and the

result is shown in Figure 6.6 with the detector resolution applied. The uncertainty

in the normalization of the 4.4 MeV peak and the lower energy peak is estimated

to be 32% and is dominated by the uncertainties in the 210Po rate, the 13C(α, n)16O

cross-section, and the neutron angular distribution. The normalization of the 6 MeV

peak is much less certain due to large uncertainties in the 13C(α, n)16O∗ branching

ratio. The total event count above the 2.6 MeV analysis energy threshold due to
13C(α, n)16O events is estimated to be 8.6± 5.9 events.

That some small fraction of the α’s emitted in 210Po decays may go on to interact

with the 1.1% natural abundance of 13C in the scintillator and produce a significant

background for reactor νe studies was somewhat unexpected. Due to its second-order

nature, this background went unnoticed in earlier KamLAND analyses [55].
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Figure 6.6: Prompt energy spectrum of 13C(α, n)16O background events with detector
resolution applied. The low energy peak is from thermalization of the neutron and is
subject to 10% uncertainties in the proton quenching factor. Its normalization, along
with that of the 4.4 MeV peak due to 12C(n, n + γ)12C, has an uncertainty of 32%.
The peak at 6 MeV is due to 13C(α, n)16O∗ and has a large uncertainty in height.
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Figure 6.7: ∆tµ distribution of 9Li/8He and νe events. The distribution is fit to a
constant background plus an exponential decay with τ = τ9Li.

6.3.2 9Li/8He Events

The long-life spallation products 9Li and 8He have 49.5% and 16% branching ratios,

respectively, for delayed-neutron β-decay, which mimics the νe signal. Since the 9Li

decay has Q = 13.6 MeV and τ1/2 = 178 ms and 8He has Q = 10.7 MeV and τ1/2 = 119

ms, the two decays are largely indistinguishable and are handled simultaneously. The

purpose of the 2 second cylindrical and full volume vetoes following muons described

in Section 5.7 is to remove these backgrounds. If the cut is removed and the time

∆tµ to all muons in the past 2 seconds is histogrammed for all νe candidates, as has

been done in Figure 6.7, the 9Li/8He contamination can be clearly seen. The decay

time is consistent with that of 9Li. The energy spectrum of 9Li/8He events selected

by inverting the 2 s spallation cuts is shown in Figure 6.8. The reactor νe background

was subtracted by normalizing the νe candidate spectrum by 1 minus the weighted

average live-fraction after the spallation cuts. The analysis energies were converted

with the electron energy function Ee−(Ea). The β− energy spectrum of the 9Li decay,

shown as the solid line, fits the data reasonably well; there is no indication that any

significant amount of 8He is produced.



100 CHAPTER 6. BACKGROUNDS

Entries  1068

 / ndf 2χ  22.21 / 12

E [MeV]
0 2 4 6 8 10 12

0

10

20

30

40

50

60
Entries  1068

 / ndf 2χ  22.21 / 12

Figure 6.8: Energy distribution of 9Li/8He events. The solid line shows the energy
spectrum of the β− emitted in the 9Li decay; its normalization was fit to the data. The
largest contributions to the χ2 are from bins at high energy. There is no indication
of 8He.

The fit of the ∆tµ distribution shown in Figure 6.7 to a constant background plus

an exponential with time constant corresponding to the 9Li decay time gives a total of

292± 23 events prior to spallation cuts. To evaluate the background remaining when

the spallation cuts are applied, the events are separated into statistically independent

classes: events occurring within 2 s of a showering muon or a poorly tracked muon,

and events among the remaining candidates falling within 3 m of a muon track. Fits

to the ∆tµ distributions give 266 ± 19 events in the former class, and 30 ± 8 in the

latter, indicating that most of the 9Li/8He candidates are generated by showering

muons.

Again assuming the 9Li decay time, the efficiency of a 2 s veto for removing these

events is 0.99958. The efficiency is even higher for the faster 8He decay. The efficiency

of the 3 m cylinder cut is assessed by measuring the fraction of spallation neutrons

reconstructed more than 3 m from their generating muon track. Spallation neutrons

are selected as events having nsmxID > 250 occurring between 0.4 and 2 ms following

a non-showering ID muon with a good track reconstruction status. The lower limit
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Figure 6.9: Lµ distribution of spallation neutrons. The fraction of events falling
within 3 m is used to estimate the efficiency of the cylindrical veto along muon tracks
for selecting 9Li/8He events.

of 0.4 ms on the time correlation eliminates possibly biased events missing waveforms

due to ATWD dead time. A background sample is selected with the same criteria,

except with 2 ms < ∆tµ < 102 ms. The background subtracted distribution of the

neutron distances Lµ from the muon track is shown in Figure 6.9. The fraction with

Lµ < 3 m is 0.984 ± 0.014. Since neutrons are lighter than 9Li or 8He nuclei and

are hence expected to have a broader Lµ distribution, this fraction is taken as a

conservative estimate of the fraction of 9Li/8He events with Lµ < 3 m. Including

the timing cut, the total efficiency of the cylinder cut for selecting 9Li/8He events is

0.983± 0.018.

Combining the 9Li/8He event counts (N) before the spallation cuts are applied

with the removal efficiencies (ε) of the cuts leaves N(1− ε)/ε events in the data set.

For the highly efficient 2 s full-volume veto following showering muons and poorly

reconstructed muons, the residual 9Li/8He background is 0.111 ± 0.008 events. For

the cylindrical cut around well-reconstructed tracks, the remaining background is

0.5± 0.1 events. The total 9Li/8He background among the νe candidates is 0.6± 0.1
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events.

6.3.3 Fast Neutrons

Muons that go untagged by the detector can produce spallation neutrons which enter

the ID, thermalize, then undergo their usual random walk and capture on a proton.

Since the efficiency for detecting a muon in the ID is negligibly close to 100% due

to their high light yield, such a neutron would have to be generated either by an

OD-crossing muon missed by the OD, or by a muon passing through the rock just

outside of the OD. In order to make it all the way into the LS, through meters of water

and oil buffers, and still produce enough scintillation before thermalizing to create an

event above the 2.6 MeV analysis threshold, the neutron would have to have a rather

high energy, hence the name “fast” neutrons. Fast neutrons are a background for

reactor νe’s when the scintillation from recoil protons during thermalization produces

a prompt event in the analysis energy range.

The number of fast neutrons from muons passing through the OD water but not

the ID can be obtained by dividing the rate of νe candidates immediately following

OD-only muons by the OD muon efficiency εOD. By reversing the OD muon veto

in the candidate selection, i.e. requiring that candidates occur within 2 ms of an

OD muon, 4 events were found. The OD efficiency was studied with Monte Carlo

simulations and was found to be 0.9951 with all tubes functioning, but had dropped

to 0.9883 by summer 2003 due to loss of tubes in the OD [81]. Allowing for continued

efficiency loss for data taking through the end of 2003 reported here, an OD efficiency

of 0.990± 0.005 is used. This gives a count of Nwater = 4± 2 fast neutrons generated

in the water that enter the ID, of which Nwater(1− εOD) = 0.04± 0.03 go untagged.

An upper limit can be obtained on the number of fast neutrons spalled by muons

passing through the rock just outside of the OD by assuming that production rates

scale according to density and using the maximum attenuation length of neutrons

in rock, λrock = 40 cm [80]. The active volume of rock producing fast neutrons

is less than Acavernλrock, where Acavern = 1835 m2 is the area of the cavern wall.

Considering that less than 1/4 of neutrons spalled by muons passing through rock are
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Table 6.1: Total Backgrounds

Background Number of Events
Accidental 3.91± 0.05
13C(α, n)16O 8.5± 5.9
9Li/8He 0.6± 0.1
Fast n < 0.1
Total 13.2± 5.9

aimed towards the ID, the limit on fast neutrons from the rock is obtained by scaling

the rate from the water according to

Nrock < α
Acavernλrockρrock

4Vwaterρwater

Nwater, (6.2)

where ρ denotes density, Vwater = 2600 m3 is the volume of water in the OD, and α

is a factor that accounts for the extra average attenuation of a neutron emitted from

the rock with respect to neutrons emitted throughout the OD water; it’s value must

lie between 1 and e−dOD/λrock ∼ 0.3, where dOD 50 cm is typical path length across the

OD for a neutron emanating from the rock. Since Nrock here is the total number of

spallation neutrons produced in the rock, it includes neutrons spalled by muons that

go on to cross the OD. Consideration of solid angle shows that less than 5% of muons

passing within 2λrock can do so without also crossing the detector. The number of

neutrons spalled in the rock that go untagged is then Nrock×5% = 0.03±0.02 events.

Adding the contributions from the rock and the water, the total fast neutron rate in

the data taking period reported here is less than 0.1 events.

6.4 Total Backgrounds

The backgrounds from non-negligible sources discussed in this chapter are listed in

Table 6.1. Small backgrounds from geo-neutrinos and naval reactors or other hypo-

thetical sources such as a geo-reactor are ignored. The total background for the data

period reported here is 13.2± 5.9 events. In this estimate, the upper limit on the fast

neutron background has been included in the uncertainty only.



Chapter 7

Reactor Signal Estimation

7.1 Fission Yields

Nuclear reactors create power by converting the heat released in the fissions and

subsequent decay chains of heavy isotopes such as 235U into electricity. In addition

to heat, the reactions also produce the antineutrinos that comprise KamLAND’s

signal. For example, in the most common fission of 235U, two large fragments and

two neutrons are emitted in the final state:

235U + n → X1 + X2 + 2n (7.1)

Typically, one of the fragments X1 or X2 is heavier than the other; the mass number

distribution for both fragments is shown in Figure 7.1 [35]. The stable elements

nearest the peaks of the distribution are 94Zr and 140Ce, which together have 98

protons and 136 neutrons. Considering that the original 235U nucleus contains 92

protons and 143 neutrons, on average about six neutrons will be converted to protons

in order to reach stable matter. If the energy spectrum of the roughly six emitted νe’s

is known, then calculating the signal at KamLAND amounts to counting the number

104
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Figure 7.1: Mass number distribution of fission fragments of 235U (Equation 7.1), in
percent-yield. Since the distribution accounts for the masses of both fission fragments,
it is normalized to 200%. [35]

of fissions of each isotope at each reactor. Referring back to Equation 2.3, we write

Ii(Eνe , t) =

isotopes∑

k

fi,k(t)
dNνe,k(Eνe)

dEνe

, (7.2)

where fi,k(t) is the instantaneous fission rate of isotope k at reactor i, and
dNνe,k(Eνe)

dEνe

is the differential neutrino emission of isotope k, measured in [νe’s per unit energy per

fission]. The sum over k runs over the six isotopes 235U, 238U, 239Pu, 241Pu, 106Ru, and
144Ce. The uranium and plutonium isotopes together account for more than 99.9%

of νe-emitting fissions in the reactor. The last two isotopes are longer lived and are

important for periods immediately following reactor shut-downs. Their contribution

can be calculated from the uranium and plutonium fissions using published fission

yields (see, for example, [82]) and applying the appropriate decay times.

Since each fission and the chain of decays following it releases energy that heats

up the reactor core, the instantaneous thermal power of the reactor Pth,i(t) acts as a

constraint on the sum of the fission rates fi,k(t) (for the power constraint, fissions from
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242Pu must be included, although they do not emit νe’s). If the initial fuel composition

is known then the fi,k(t) can be determined by tracking the depletion of the uranium

isotopes and the breeding of the plutonium isotopes. Previous work has shown that

detailed simulations of the reactor core can track the burn-up to within the error on

Pth,i(t) [44]. However, it is practically impossible in a finite time to simulate all 53

commercial Japanese reactors contributing to KamLAND’s signal1. Instead, a burn-

up model constructed by Tokyo Electric Power Company, Inc. (TEPCO) and Tohoku

University is used to estimate the fi,k(t). The inputs to the model are the initial

fraction of new fuel and 235U concentration, and the instantaneous and integrated

thermal power output of the reactor. These data are provided for all 53 reactors

and are utilized according to special agreements between the reactor operators and

Tohoku University as a member of KamLAND. During stable reactor operation, data

are provided on a weekly basis; when the reactors are starting or stopping, hourly data

are provided. The model reproduces detailed calculations to within an accuracy of

1%. The simulation results for a few power cycles of a typical Japanese 3 GWth boiling

water reactor (BWR) are shown in Figure 7.2. As expected, plutonium isotopes are

generated as the uranium isotopes are depleted. The periods during which the rates

fall to zero correspond to reactor shut-downs for maintenance and refueling, during

which a fraction of the fuel is replaced while the remaining fuel is redistributed to

maximize burn-up efficiency.

The power is determined from a calculation of the energy balance across the steam

generator or reactor vessel, the uncertainty of which is dominated by the feed-water

flow measurement. The time dependence of Pth,i(t) is cross checked with publicly

available independent records of electricity generation [83]. The uncertainty on the

power measurements is quoted by the reactor operators as 2%, in accordance with the

margin of error for safe operation recognized by regulatory agents. This conservative

estimate assumes that measurements made at different reactors may be correlated;

efforts are underway to reassess the validity of such assumptions, and in the future a

smaller uncertainty may be achievable.

1Much of the difficulty lies in the fact that existing detailed simulations are proprietary or require
proprietary information. Reactor operators are reluctant to grant third parties access to these codes
and information.
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Figure 7.2: Calculated fission rates of heavy isotopes over a few power cycles of a
typical 3 GWth BWR. The periods during which the rates fall to zero correspond to
reactor shut-downs for maintenance and refueling.

The contribution from reactors in Korea is estimated with a 10% error from elec-

tricity generation records [84] under the assumption that they have the same average

fuel composition as Japanese reactors. The contribution from Japanese research reac-

tors and from reactors around the world is estimated with a conservative 50% uncer-

tainty from publicly available data [51] with the same fuel composition assumption

used for Korean reactors. The fractional contribution of all non-Japanese reactors

and Japanese research reactors combined is estimated to be (4.5± 0.6)%.

The simulated average relative fission yields for the run period used in this analysis

are 235U : 238U : 239Pu : 241Pu = 0.563 : 0.079 : 0.301 : 0.057. The total uncertainty on

the fission yield calculations is estimated to be 2.3%, obtained by adding in quadrature

the 2.0% error on the reactor power, the 1.0% error on the burn-up model relative to

detailed reactor core simulations, and the 0.6% uncertainty in the contribution from

non-Japanese commercial reactors and research reactors.
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Figure 7.3: νe energy spectra of 235U, 238U, 239Pu, and 241Pu above the 1.8 MeV
inverse β-decay threshold.

7.2 νe Spectra

With the fi,k(t) in hand, the next step is to obtain the
dNνe,k(Eνe )

dEνe
. For 235U, 239Pu

and 241Pu, data are available on β-decay spectra measured at the ILL High Flux

Reactor [85, 86]. Converting these β spectra into νe spectra is non-trivial since it

involves an inversion of the sum of many spectra in long decay chains with many

branches. No such measurements have been made for 238U, so we rely on theoretical

calculations [87]. Comparisons between calculations and measurements of the other

νe spectra indicate that the uncertainty of the calculations is on the order of 10%.

However, since 238U makes up only 10% of the νe signal, this amounts to only a 1%

error on the total flux. The νe spectra above the 1.8 MeV inverse β-decay threshold

is plotted for each of the four heavy isotopes in Figure 7.3. The uncertainty on the

νe rate above the analysis energy threshold due to these spectra is estimated to be

2.5%.
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7.3 νe Flux and Baseline

The νe flux at KamLAND weights the contribution from each reactor according to

the inverse-square of the distance Li from KamLAND:

φνe(t) =
reactors∑

i

φνe,i(t) =
reactors∑

i

∫∞
0

Ii(Eνe , t)dEνe

4πL2
i

. (7.3)

The longitudes and latitudes of Japanese commercial reactor cores were provided by

TEPCO; those of KamLAND were obtained from Kamioka Mining and Smelting Co.,

Ltd. The errors on the Li are estimated to be less than 70 m. The time variation

of φνe(t) at KamLAND is shown in Figure 7.4. The flux is also broken down into

reactor groups. As can be seen in the figure, many reactors around Japan were

powered down during 2003 for safety maintenance, resulting in a modulation of the

total flux at KamLAND by about 50%. As reactors at different distances varied their

power, the typical baseline distance νe’s traveled on their way to KamLAND also

changed. The baseline variation for Japanese reactors, given by

L̄Jp(t) =

∑Jp reac
i Liφνe,i(t)∑Jp reac

i φνe,i(t)
, (7.4)

is plotted in Figure 7.5. The sum is limited to reactors in Japan so that L̄Jp is

closer to the peak of the full baseline distribution rather than its true average (see

Figure 2.3). The position of the peak is a more physical quantity than the average

baseline because the baseline distribution is essentially the “power spectrum” for

neutrino oscillations, and it is the position of the lowest-frequency peak in a power

spectrum that determines the fundamental mode of a periodic signal.

7.4 Total Reactor νe Signal

The remaining ingredients in the signal calculation (see Equation 2.3) are the resolu-

tion function R(Ep, E
′
νe

) described by Equations 2.2 and 4.10, the number of target

protons np calculated in Section 5.6, the cross-section σ(Eνe) taken from [52], the νe



110 CHAPTER 7. REACTOR SIGNAL ESTIMATION

Apr 02 Jul 02 Oct 02 Dec 02 Apr 03 Jul 03 Oct 03 Jan 04

]
-1

 d
-2

 c
m

10
 [

10
eνφ

0

2

4

6

8

10

12
Data provided according to special agreements between Tohoku University and Japanese nuclear reactor operators.

Total
Wakasa Bay
Kashiwazaki
Korea

Other

Figure 7.4: νe flux at KamLAND, broken down into different reactor groups.
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Figure 7.5: Variation of the effective baseline L̄Jp(t), defined by Equation 7.4
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Table 7.1: Systematic Uncertainties

Number of target protons 6.2%
Detection efficiency 0.5%
Energy threshold 2.3%
Livetime 0.05%
Fission yields 2.3%
νe spectra [85, 86, 87] 2.5%
Cross-section [52] 0.2%
Total 7.4%

detection efficiency ε = 0.933 ± 0.004 calculated in Section 5.9, and the oscillation

probability, given by Equation 1.11. Assuming no oscillations (∆m2, sin2 2θ = 0),

the total expected number of detected νe’s is given by the energy- and time-integral

of Equation 2.3, yielding Nno osc = 310. ± 23 events. The 7.4% systematic error is

broken down in Table 7.1, and includes a 2.3% error in the energy integration (as-

suming no oscillation) due to the 2.4% uncertainty in the energy scale at 2.6 MeV.

The no-oscillation expected energy spectrum (the time-integral of Equation 2.3) is

plotted in Figure 7.6.
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Figure 7.6: Expected reactor νe prompt energy spectrum in the absence of neutrino
oscillation, given by the time-integral of Equation 2.3. The total expected event count
above 2.6 MeV is 310.± 23 events.



Chapter 8

Analysis

The data reported here were collected between March 2002 and December 2003, with

a total exposure of 599 ton-years. Applying the event selection criteria described in

Chapter 5 leaves 226 events. Analyses of the total event rate, the time variation, and

the energy distribution are presented below.

8.1 νe Disappearance and Average Survival Prob-

ability

One analysis that can be performed with the KamLAND data is a test of νe disap-

pearance comparing the full observed event count, Nobs = 226 events, and its expected

background contribution from Chapter 6, Nbg = 13.2 ± 5.9 events, to the expected

event count in the absence of neutrino oscillations, calculated in Chapter 7 to be

Nno osc = 310. ± 23 events. Assuming gaussian systematic and poisson statistical

uncertainties, the deficit of Nobs relative to Nno osc + Nbg is evidence for νe disappear-

ance with 99.96% statistical significance. KamLAND is the first reactor antineutrino

experiment to detect such disappearance. The average νe survival probability is given

by the ratio
Nobs −Nbg

Nno osc

= 0.687± 0.049(stat)± 0.055(sys) (8.1)

113
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The statistical error is on the same order as systematics. When interpreting the

survival probability in terms of neutrino oscillation, it should be kept in mind that

baseline variation depicted in Figure 7.5 implies a time-dependent survival probability.

The number reported above is the flux-weighted average survival probability over the

data taking period.

8.2 Time Variation

The time variation of the νe rate shown in Figure 7.4 implies that the detected event

rate should vary in time with the same pattern if the events detected are indeed

νe’s produced by nuclear reactors. To extract this correlation, the data were binned

according to data taking periods of similar expected event rate, and the detected event

rate was measured for each bin. The correlation is plotted in Figure 8.1, in which the

horizontal position of each point is determined by the time-weighted average of the

expected rate in the bin. The vertical error bars express the statistical uncertainty

on the measured rate.

For the case of no oscillation, the measured event rate should vary linearly with

the expected event rate with slope 1. For finite ∆m2 and sin2 2θ, the expectation

value in each bin is the expected event rate times the average survival probability for

the data taking periods included in the bin. While the average survival probability is

different from bin to bin, for the values of ∆m2 and sin2 2θ near those determined in

Section 8.3 below, that variation is slight. As a result, the trend is well fit by a first-

order polynomial, with slope approximately equal to the average survival probability

and y-intercept equal to the rate of background events.

A linear fit to the data is shown as the dashed line in Figure 8.1. The fit has a

χ2 of 0.56 for 6 degrees of freedom, and the blue curves depict the 90% CL The solid

black line is a linear fit with the y-intercept bound to the measured background rates,

with χ2 = 3.8 for 5 degrees of freedom. The slope of 0.71 is in good agreement with

the average νe survival probability reported in Section 8.1. Due to KamLAND’s low

event rate, even a flat line with no slope (i.e. all background) fits the data reasonably

well, with χ2 = 2.0 for 5 degree of freedom. However, the positive trend does indicate
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Figure 8.1: Correlation of observed and expected νe rates. The slope of a linear
fit gives roughly the survival probability (see text), while the y-intercept gives the
background level. The dashed line shows the best linear fit with χ2/NDF = 0.56/4;
the 90% CL is drawn as the dotted curves. Constraining the fit to known background
levels (box) gives a slope of 0.71 with χ2/NDF = 3.8/5.
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that the event rate varies as expected.

As discussed in Section 6.1.2, a hypothetical geo-reactor at the Earth’s core would

produce νe’s with an energy spectrum indistinguishable from that of power reactor

νe’s. Since the signal from this geo-reactor would remain constant in time, this time

variation analysis could in principle be used to test the existence of the geo-reactor.

However, a few-TWth geo-reactor would produce a background rate of only a few

events per year, roughly the same level as other backgrounds in KamLAND (see the

box in Figure 8.1). Again, due to KamLAND’s low event rate, this time variation

analysis is not sensitive enough to place a meaningful upper limit on the geo-reactor.

A more sophisticated analysis is underway. For the analysis described in Section 8.3,

the geo-reactor is assumed to not exist.

8.3 Spectral Analysis

KamLAND’s true power lies in its ability to measure the energy spectrum of the

incident νe’s. It is able to detect any spectral distortions that might appear due to

the energy dependence of the neutrino oscillation probability. In order to use the

spectrum to test the hypothesis of neutrino oscillation, we start with the unbinned

likelihood function for the data,

L(Ea1, Ea2...EaN , p̂|Θ) = P (N |Θ)
N∏

i=1

dP (Eai|Θ)

dEa

P (p̂|Θ). (8.2)

Here the Eai are the measured event energies in the analysis energy scale, and i runs

from 0 to N = 226 observed events. The vector p̂ represents various parameters mea-

sured from external studies, such as background rates and energy scale parameters,

with “true” values p and error matrix σ̃2
p. Θ represents the underlying parameters

determining the probability distribution function for the Eai and p̂, namely ∆m2,

sin2 2θ, p, and any other parameters q for which no external information is avail-

able. P (N |Θ) is the poisson probability of getting N events considering that N0 were



8.3. SPECTRAL ANALYSIS 117

expected:

P (N |Θ) =
N0(Θ)Ne−N0(Θ)

N !
. (8.3)

The value of N0 is calculated for a given value of Θ from the time- and energy-

integral of Equation 2.4 over the data taking period and the analysis energy range,

respectively. Note that the energy integral depends on the transformation function

from analysis energy to real energy. The dP (Eai|Θ)
dEa

are given by the normalized time-

integral of Equation 2.4 converted to the analysis energy scale,

dP (Eai|Θ)

dEa

=
1

N0(Θ)

dN0(Eai|Θ)

dEa

, (8.4)

The third term in the likelihood function, P (p̂|Θ), is determined by the external

measurements:

P (p̂|Θ) =
1√

2π|σ̃2
p|

e−
1
2
(p̂−p)T (σ̃2

p)−1(p̂−p). (8.5)

With the likelihood function in hand, we simply maximize it under the variation of

Θ.

For computational purposes it is much more practical to maximize the logarithm of

the likelihood function, log L. The log-likelihood function avoids round-off errors that

could otherwise be encountered with the extremely small likelihoods yielded by the

product of probabilities expressed by Equation 8.2. Additionally, confidence intervals

are easily calculated since excursions from the maximum value log Lbest, defined as

∆χ2 = −2(log L−log Lbest), obey a χ2 distribution with number of degrees of freedom

corresponding to the number of unconstrained parameters in the fit. The logarithm

of the first two terms in Equation 8.2 simplifies greatly:

log

(
P (N |Θ)

N∏
i=1

dP (Eai|Θ)

dEa

)
= N log N0(Θ)−N0(Θ) + C +

N∑
i=1

log
dP (Eai|Θ)

dEa

= −N0(Θ) + C +
N∑

i=1

log
dN0(Eai|Θ)

dEa

, (8.6)



118 CHAPTER 8. ANALYSIS

where C is a constant (i.e. it doesn’t depend on Θ). Defining

χ2
p ≡ (p̂− p)T (σ̃2

p)−1(p̂− p), (8.7)

the function to maximize becomes

log L =
N∑

i=1

log
dN0(Eai|Θ)

dEa

−N0(Θ)− 1

2
χ2

p + C ′, (8.8)

where all constant terms have been absorbed into C ′.

The conversion, when necessary, of the components of dN0(Eνe )

dEνe
into analysis en-

ergy scale is performed using the chain rule. For example, for the reactor νe’s the

conversion is

dNνe(Ea)

dEa

=
dNνe(Eνe(Ea))

dEνe

dEνe

dEa

=
dNνe(Ep(Ea) + E∆)

dEp

dEp

dEa

, (8.9)

where Equation 2.2 has been used, and Ep(Ea) refers to the transformation function

discussed at the end of Section 4.4.4. The integration limits that determine the value

of N0 use the same transformation function. The energy scale transformation uncer-

tainty would be properly handled by allowing the parameters ΘE in Equation 4.15

to vary, weighting them in χ2
p by their covariance matrix σ̃2

E. Since this is technically

difficult to implement, the energy scale error is instead approximated as a linear de-

parture from the central energy scale transformation function evaluated at the best-fit

value of ΘE, denoted Θ̂E. Defining Êp(Ea) ≡ Ep(Ea|ΘE = Θ̂E), we approximate

Ep(Ea,ΘE) ≈ E0 + αEÊp(Ea),
dEp

dEa

≈ αE
dÊp(Ea)

dEa

. (8.10)

The values of E0 and αE are constrained in χ2
p by calculating the χ2 of the devia-

tion from the central energy scale transformation relative to the overall energy scale

uncertainty at three sampled energies, Es = 1.022 MeV, 2 MeV, and 3 MeV. The

choice of three points gives the contribution to χ2
p from the energy rescaling roughly

the same weight as if the three dominant parameters a, k0, and kc in ΘE were being
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varied (recall that wide variations in kB have little effect on the energy scale transfor-

mation function). The particular choice of energies between 1 and 3 MeV is intended

to restrict the energy rescaling in the region over which the detector is most precisely

calibrated.

The specific spectra appearing in dN0(Eai|Θ)
dEa

and N0 are the reactor νe spectrum

(Equation 2.3), the accidental background spectrum (Figure 6.2), the 9Li/8He spec-

trum (the solid line in Figure 6.8), and the 13C(α, n)16O spectrum (Figure 6.6). The

handling of each is discussed below. The rates of other backgrounds in the analysis

energy range are assumed to be negligible and are ignored.

The reactor νe spectrum is given a variable normalization αreac, which is con-

strained by a term in χ2
p to remain within its systematic error σreac of 1. The con-

tributions to σreac are the same as those broken down in Table 7.1, except that the

energy scale uncertainty at the analysis threshold is not included. It is naturally

accounted for by the energy rescaling described above. Uncertainties in the energy

dependence of the resolution function, the inverse β-decay cross-section, and the raw

heavy isotope spectra
dNνe,k(Eνe)

dEνe
appearing in Equation 7.2 may additionally distort

the spectral shape. However, these distortions are assumed to be insignificant com-

pared to the statistical uncertainties in the measured spectral shape and the energy

scale uncertainty, and are ignored in this analysis.

The accidental spectrum is the best-determined spectrum appearing in Equa-

tion 2.4: not only is it the background measured with the highest precision (σacc =

1.3%), but its natural units are analysis energy, and therefore the conversion between

analysis and real energy represented by Equation 8.9 is not necessary. A variable

normalization parameter for the accidental spectrum, αacc, is included in log L, and

it is constrained in χ2
p to lie within σacc of 1.

The 9Li/8He contribution, like the accidental spectrum, is given a variable nor-

malization αLH constrained within the σLH = 74% uncertainty on its measured rate.

Unlike the accidental spectrum, energy scale uncertainties are applied because the

shape of the 9Li/8He spectrum is obtained from a calculation of the 9Li β−-decay

spectrum. Uncertainties in the shape of the 9Li/8He spectrum are ignored relative to

the statistical and energy scale uncertainties.
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The 13C(α, n)16O spectrum is divided into three sub-spectra, each of which is

handled differently in the analysis. The three sub-spectra are the low-energy hump

from the thermalization of the neutron alone, the peak near 4.5 MeV consisting of an

additional 12C∗ excitation γ, and the the peak just above 6 MeV from γ’s emitted by

the 13C(α, n)16O∗ states. The energy scale uncertainty is applied to all three spectra,

while for the low-energy region an additional energy rescaling factor, αpq, is included

to account for uncertainty in the proton quenching factor. This rescaling factor is

constrained to lie within σpq = 10% of 1.0 in χ2
p. The normalization of the low-energy

hump and the 4.5 MeV peak are tied to each other but are allowed to vary via the

parameter ααngs by the uncertainty σαngs = 32% in the 13C(α, n)16Ogs rate. The

normalization of the peak above 6 MeV is allowed to vary freely due to the large

uncertainty in the branching ration for 13C(α, n)16O∗. Its normalization parameter

ααn∗ is the only parameter comprising q in the likelihood function.

Putting all of these details together, the factors in log L become

dN0(Eai|Θ)

dEa

= αreacαE
dNνe(E0 + αEÊp(Eai)|∆m2, sin2 2θ)

dEp

dÊp(Ea)

dEa

+

αacc
dNacc(Eai)

dEa

+ αLHαE
dNLH(E0 + αEÊp(Eai))

dEp

dÊp(Ea)

dEa

+

ααngsαE
dNαn low(αpq(E0 + αEÊp(Eai)))

dEp

dÊp(Ea)

dEa

+

ααngsαE
dNαn mid(E0 + αEÊp(Eai))

dEp

dÊp(Ea)

dEa

+

ααn∗αE
dNαn∗(E0 + αEÊp(Eai))

dEp

dÊp(Ea)

dEa

(8.11)

N0(Θ) = αreacNνe(∆m2, sin2 2θ, E0, αE) + αaccNacc + αLHNLH(E0, αE) +

ααngsNαn low(E0, αE, αpq) + ααngsNαn mid(E0, αE) +

ααn∗Nαn∗(E0, αE)

(8.12)
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Figure 8.2: Measured prompt energy spectrum with best-fit to neutrino oscillation.
The shaded regions are the best-fit accidental and 13C(α, n)16O background contri-
butions. The dashed line marks the 2.6 MeV analysis energy threshold.

χ2
p =

(αreac − 1)2

σ2
reac

+
(αacc − 1)2

σ2
acc

+
(αLH − 1)2

σ2
LH

+
(ααngs − 1)2

σ2
αn gs

+

(αpq − 1)2

σ2
reac

+
3∑
1

(E0 + Es i(αE − 1))2

σ2
s i

(8.13)

The value of log L was maximized under the variation of the 10 parameters ∆m2,

sin2 2θ, E0, αE, αreac, αacc, αLH , ααngs , αpq, and ααn∗ . The maximum was found at

∆m2 = 8.05 × 10−5 eV2, sin2 2θ = 0.68. Each constrained parameter fit within its

uncertainty of its central value. The normalization of the 13C(α, n)16O∗ spectrum

(determined by the free parameter ααn∗) fit to a value of 2.3 events. The best-fit

prompt energy spectrum is plotted together with the histogrammed data in Figure 8.2.

The best-fit accidental and 13C(α, n)16O background contributions are also shown.

To determine the confidence intervals for ∆m2 and sin2 2θ, the value of ∆χ2 =

−2(log L(∆m2, sin2 2θ)− log Lbest) was obtained for every point (∆m2
i , sin

2 2θj) on a

grid in ∆m2-sin2 2θ parameter space, where log Lbest is the value of log L(∆m2, sin2 2θ)

at the best-fit point. log L(∆m2
i , sin

2 2θj) was computed by fixing ∆m2 = ∆m2
i and
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Figure 8.3: Confidence levels for a fit of neutrino oscillation to the KamLAND data
(shaded regions) and solar neutrino experiments (lines) [26]. The joint-1σ intervals
within LMA I are ∆m2 = 8.05+0.95

−0.72 × 10−5 eV2, sin2 2θ > 0.46.

sin2 2θ = sin2 2θj while the remaining 8 parameters were varied to maximize log L.

Contours in ∆χ2 are drawn in Figure 8.3 corresponding to the 95% (∆χ2 = 5.99),

99% (∆χ2 = 9.21), and 99.73% (∆χ2 = 11.83) confidence levels (CL’s) . There are

three inclusion regions, all in the proximity of the LMA MSW solution to the solar

neutrino problem (drawn in solid lines in the figure). The two at larger values of

∆m2 have been named “LMA I”, and “LMA II”, in order of increasing ∆m2 [88].

The one at lower ∆m2 will be referred to as “LMA 0”. The best-fit point lies in

LMA I, and the joint-1σ intervals for the two oscillation parameters in this region are

∆m2 = 8.05+0.95
−0.72 × 10−5 eV2, sin2 2θ = 0.68+0.20

−0.22. The minima of LMA 0 and LMA

II lie at the 44.0% and 91.6% CL’s, respectively. The minimum along the line at

maximal mixing (sin2 2θ = 1.0) lies at the 51.8% CL.
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As is well known, while the unbinned likelihood function provides a powerful way

to determine the best-fit parameters and their confidence intervals for some theory,

the value of log L at its maximum cannot be used to test the goodness of the fit to the

data [89]. To test the fit, we follow the procedures outlined in [89] and bin the data

into n = 20 energy bins whose widths are chosen such that the probability, according

to the best-fit to neutrino oscillation, of an event landing in any particular bin is a

constant. The goodness-of-fit statistic is chosen to be the Pearson-χ2 (χ2
P ) of the data

with respect to the theory in this binning:

χ2
P =

n∑
i=1

(Ni −N0i)
2

N0i

= 25.3, (8.14)

where Ni and N0i are the observed and expected event counts in bin i, respectively.

Naively one would expect χ2
P to vary as χ2 with n − [2 + dim(q)] = 17 degrees of

freedom, since ∆m2, sin2 2θ, and q = {ααn∗} are varied freely in the maximization of

log L. However, this is not strictly the case, partly because log L is not binned like χ2
P ,

and also because the χ2
p terms in log L do not appear in χ2

P . In case χ2
P for the fitting

procedure used in this analysis is slightly different from the standard χ2 distribution,

10000 Monte Carlo (MC) energy spectra are simulated from the best-fit spectrum. As

is done for the data, log L is maximized to obtain a best-fit to neutrino oscillation for

each MC spectrum. The best-fit oscillation parameters for the MC spectra are plotted

in Figure 8.4. Then χ2
P is calculated for each MC spectrum relative to its own best-fit.

The distribution of χ2
P for the MC spectra is histogrammed in Figure 8.5. Although

the distribution nicely follows the χ2 distribution with 17 degrees of freedom, drawn

as the solid curve, its mean is slightly different from the expected 17. Of the MC

spectra, 907 have χ2
P > 25.3, giving a goodness-of-fit of 9.1% for neutrino oscillation.

While this suggests that the fit might not be particularly good, it does not indicate

that anything is seriously wrong with the assumption that the energy spectrum can

be described by neutrino oscillation. It should also be kept in mind that statistics

derived from binned data are inherently sensitive to the choice of binning. The choice

of 20 bins was made by approximating Equation 30.72 in [89]. As illustrated in

Figure 8.6, the goodness of fit varies widely for 5 < Nbins < 35; the a priori choice
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Figure 8.4: Best-fit oscillation parameters to MC spectra.

Nbins = 20 appears to be somewhat “unlucky” in this respect.

8.4 Spectral Distortion

Exploring further the significance of the distortion of the energy spectrum measured

at KamLAND, we plot in Figure 8.7 the histogrammed data along with the no-

oscillation spectrum (light grey line). The disagreement between overall amplitudes

of the data and the no-oscillation hypothesis is readily apparent. Next we allow the

no-oscillation spectrum to rescale itself to fit the data better by setting ∆m2 = 0,

sin2 2θ = 0 and removing the constraint on αreac from χ2
p in log L. This rescaled no-

oscillation spectrum is plotted as the dark line in Figure 8.7. The best-fit rescaling

parameter was 0.825 ± 0.046. Even by eye it appears to still be a poor fit to the

data, particularly in the first two bins above threshold. The procedure described in

Section 8.3 to obtain the goodness-of-fit for neutrino oscillation was used to test the

rescaled no-oscillation fit. The data had χ2
P = 32.7, less than only 1.8% of the MC

spectra. Taking the scaled no-oscillation theory as a null-hypothesis, its goodness-of-

fit may be interpreted as establishing the significance of spectral distortion at 98.2%
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Figure 8.7: Best-fit of a scaled no-oscillation hypothesis to the KamLAND data (dark
line). The fit is poor, particularly in the first two bins. The unscaled no-oscillation
reactor νe spectrum is drawn as the grey line.

significance.

Keeping the constraint on αreac out of χ2
p, the values of ∆m2 and sin2 2θ were once

again allowed to vary, yielding a “shape-only” fit to neutrino oscillation. The ∆χ2

contours are drawn for this fit in Figure 8.8. These contours show that KamLAND’s

sensitivity in ∆m2 is contributable entirely to the shape of the spectrum. The joint-

1σ error bars on ∆m2 within the LMA I island are ∆m2 = (8.14+0.83
−0.73) × 10−5 eV2.

The shape-only fit weakly prefers maximal mixing in LMA 0, with the minimum in

LMA I lying at the 59.1% CL. It is the additional constraint of the rate that pulls

∆m2 up into LMA I and sin2 2θ to smaller values.

While much emphasis has been placed on the apparent spectral distortion, it is

difficult to simply look at the KamLAND spectrum and claim that its difference

from the no-oscillation spectrum looks particularly “oscillation-like”. This difficulty

is rooted in the fact that the oscillation probability, Equation 1.11, is really a func-

tion of L/Eνe rather than simply Eνe . So, as a visual tool, the event distribution in

Leff /Eνe is histogrammed in Figure 8.9 as a fraction of the no-oscillation expectation.
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Figure 8.8: Confidence levels for a shape-only fit of neutrino oscillation to the Kam-
LAND data. The spectral shape weakly prefers maximal mixing in LMA 0; it is the
added constraint of the total rate that pushes the best-fit point into LMA I. LMA 0
is inconsistent with solar neutrino experiments.

Eνe is the neutrino energy, calculated from Ep using Equation 2.2. The “effective”

baseline Leff is a constant, acting as a rescaling, and is taken to be 174 km, given by

the time-average of L̄Jp(t) defined by Equation 7.4. The shaded regions correspond

to energies outside of the prompt energy analysis range. The blue histogram corre-

sponds to the best-fit neutrino oscillation expectation in this variable; the data nicely

follow its sinusoidal pattern. To highlight this oscillatory pattern, the sinusoidal sur-

vival probability versus Leff /Eνe for a single νe source at baseline Leff is sketched

as the dotted curve. The difference between the best-fit oscillation pattern and this

“ideal” oscillation is due primarily to the spread in the reactor baseline distribution,

Figure 2.3, which causes the amplitude of the oscillation pattern to wash out with in-

creasing distance or lower energy. If ∆m2 were much larger or smaller than the value

measured by KamLAND, no spectral distortion would be present, and the limits on

the parameter would be much weaker.
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8.5 Solar + KamLAND Analysis

Assuming CPT invariance, which implies that Pνe→νe = Pνe→νe , the KamLAND re-

sult may be used to further constrain the LMA MSW solution to the solar neutrino

problem. A two-flavor analysis was performed combining the KamLAND reactor νe

spectral measurement with the observed solar neutrino fluxes assuming the Standard

Solar Model [22, 90]. The systematic uncertainties in these two sets of experiments

were assumed to be completely uncorrelated. A fit to ∆m2 and tan2 θ was performed

by adding a penalty term to KamLAND’s log-likelihood function, log LKL defined by

Equation 8.8, for the solar data:

log Ltot = log LKL + log Lsol. (8.15)

The contributions to log Lsol are seven coupled equations corresponding to the gaus-

sian probabilities of each solar neutrino experiment to observe its reported flux given a
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Figure 8.10: Confidence levels for a combined fit of neutrino oscillation to solar [90]
+ KamLAND data. The best-fit point is at ∆m2 = 7.86+0.75

−0.59 × 10−5 eV2, tan2 θ =
0.391+0.036

−0.034.

particular set of oscillation parameters, with a constraint for the solar irradiance. The

full likelihood was minimized as before on a grid of points in parameter space, giving

the contours shown in Figure 8.10. The joint-1σ errors on the oscillation parameters

for the combined analysis are ∆m2 = 7.86+0.75
−0.59 × 10−5 eV2, tan2 θ = 0.391+0.036

−0.034.



Chapter 9

Conclusions

9.1 Results and Implications

As presented in Chapter 8, KamLAND has observed the disappearance of reactor

electron antineutrinos with 99.96% statistical significance. A time variation analysis

shows weak but positive correlation between the detected signal and reactor power

variations. Interpreted in terms of two-flavor neutrino oscillation, the KamLAND

spectrum restricts the mixing parameters ∆m2 and sin2 2θ to 3 islands, named LMA

0, I, and II in order of increasing ∆m2. The best fit is in LMA I and is consistent

with the LMA MSW solution to the solar neutrino problem. The joint-1σ confidence

intervals for the mixing parameters within LMA I are ∆m2 = 8.05+0.95
−0.72 × 10−5 eV2

and sin2 2θ = 0.68+0.20
−0.22.

While the goodness of fit for the hypothesis of neutrino oscillation is only 9.1%,

there is no indication of fundamental problems with the fit. On the other hand, an

un-oscillated spectral shape rescaled to fit the data is a very poor fit, giving evidence

for spectral distortion at 98.2% significance. A shape-only fit to the KamLAND data

reveals that the sensitivity in ∆m2 is determined essentially by this shape distortion.

Hence the KamLAND result does not rely on the reactor power data, a precise deter-

mination the fiducial volume size, or any other quantity that affects the overall rate

only. When the KamLAND data are plotted as a ratio of the expected signal, the
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spectral distortion resembles very much an oscillation pattern, although the signifi-

cance of the oscillation is not strong enough at this point to claim that the KamLAND

data is evidence of such.

Assuming CPT invariance, KamLAND eliminates all neutrino oscillation solutions

to the solar neutrino problem except LMA at > 99.73% CL. A combined two-flavor os-

cillation analysis of solar neutrino measurements and the KamLAND spectrum leaves

only LMA I. The joint-1σ confidence intervals for the mixing parameters deduced

from the combined analysis are ∆m2 = 7.86+0.75
−0.59× 10−5 eV2 and tan2 θ = 0.391+0.036

−0.034.

Essentially, the sensitivity on ∆m2 comes from the KamLAND spectrum, while the

tan2 θ limits are determined by the solar neutrino fluxes.

KamLAND is the first and only experiment so far to have observed electron an-

tineutrino disappearance using man-made sources, marking a step forward for the

neutrino oscillation industry. Perhaps more significant, however, is the fact that the

mixing parameters deduced by KamLAND agree so beautifully with solar neutrino

results. KamLAND uses scintillation detection to investigate essentially vacuum os-

cillations of antineutrinos emitted by nuclear reactors; solar neutrino experiments

use radio-chemical and water Cherenkov detection to investigate matter oscillations

of neutrinos from the sun. These experiments could not be more different, yet the

physics of neutrino oscillation unites them in one consistent theoretical framework.

9.2 KamLAND Prospects

In the present analysis, statistical uncertainties are on the same level as systematics.

KamLAND continues to take data, and will likely double its present livetime. Efforts

are underway to address several of the larger contributions to the systematic error.

A “4π” calibration system capable of deploying γ sources to off-axis positions is

in its final stages of development. It will be used to calibrate vertex reconstruction

algorithms throughout the fiducial volume and hence obtain an error on rfid. The

target precision for the deployed source position of < 5 cm at r = 5 m could reduce

the current 6.2% error on the fiducial volume to the 3% level or better.

Another project well underway is the installation of a muon tracking chamber in
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the dome above the detector. With a secondary measurement of a sample of muon

tracks crossing the detector, the muon track reconstruction software can be improved

and its performance consistently evaluated. The muon tracking chamber can also be

used to verify the OD efficiency and fast neutron background estimates.

As explained in Chapter 7, the 2% uncertainty due to the reactor power is ob-

tained from regulatory safety margins rather than a detailed analysis of the power

measurement itself. Preliminary work to reassess this error indicates that a smaller

uncertainty may be reasonable. In particular, reactors which have installed the lat-

est ultrasonic flow-measurement technology can measure the power to better than a

percent. In addition, a significant fraction of this error may be uncorrelated between

reactor sites, allowing for partial cancelations in the summation of the contributions

from many reactors.

There are many studies presented in this analysis which would benefit greatly

from a full Monte Carlo (MC) simulation of KamLAND. Difficulties in simulating the

optical properties of the world’s largest scintillator detector have confounded Kam-

LAND MC efforts to date. However, a push is being made to develop a more useful

and detailed detector simulation. A good MC could drastically improve detector un-

derstanding and reconstruction codes. In particular, it could be used to explore the

effect of electronics dead time on reconstruction, or to better estimate the systemat-

ics of the fiducial volume ratio measurements with 12B/12N candidates and spallation

neutrons. The MC work will hopefully lead to reductions of systematics in many

areas of the experiment.

Most of the systematic uncertainties listed in Table 7.1 affect the rate only. How-

ever, due to the nature of the oscillation probability function (Equation 1.11), the

rate systematics have little impact on the final ∆m2 sensitivity. As demonstrated by

the shape-only analysis reported in Section 8.4, the ∆m2 sensitivity comes essentially

from KamLAND’s spectral shape. As statistics increase, the ∆m2 error bars may

continue to shrink, unhindered by the rate systematics. This suggests a growing need

to revisit the uncertainties in the spectral shape. In the present analysis, uncertain-

ties in the νe spectra (Section 7.2), errors in the resolution function parameters, and
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non-linearities in the energy scale error were ignored as insignificant relative to statis-

tical errors. The largest of these is the νe spectral uncertainties, which are currently

treated as an error on their normalization only. But recall that they are derived from

inversions of β-spectra measurements, so errors in different energy regions are not in-

dependent. It may be necessary to parameterize these uncertainties and incorporate

their variation into the likelihood function.

In addition to the reassessment of systematic errors, KamLAND is preparing for

a second phase aimed at measuring the 7Be peak in the solar neutrino spectrum,

see Figure 1.1. These monoenergetic neutrinos scatter elastically off of electrons in

the scintillator, giving a spectrum of single events characterized by a sharp edge at

the maximum e− recoil energy of 665 keV. In order to observe these neutrinos, Kam-

LAND would need to decrease backgrounds in the sub-MeV range by some 6 orders of

magnitude. Most of these backgrounds are due to 85Kr and 210Pb, with some contri-

butions also from 40K. Scintillator re-purification research and development teams are

devising ways to efficiently remove these contaminants from the scintillator. If they

are successful, KamLAND may be capable of detecting an expected few hundred 7Be

neutrinos per day and constrain further the Standard Solar Model. Reactor neutrino

studies would continue during the solar neutrino detection phase.

Meanwhile, a wealth of other physics topics is being explored with KamLAND.

Currently under investigation are geo-neutrinos in the energy range 0.9 to 2.6 MeV.

A more sophisticated time variation analysis may lead to a meaningful upper limit on

the power of a geo-reactor at the center of the Earth. A measurement of spallation

neutron production rates at the KamLAND depth is also being prepared. And with

at least a factor of 3 increase in accumulated livetime since the initial publication, the

sensitivity to the solar νe flux has improved and is being explored. Including future

updates to the reactor νe result and the possibility of solar neutrino detection, many

exciting physics results are still to come from KamLAND.



Bibliography

[1] J.N. Bahcall et al., Astrophys. J. 555, 990 (2001).

[2] R. Davis et al., Phys. Rev. Lett. 20 1205 (1968).

[3] J.N. Bahcall et al., Phys. Rev. Lett. 20 1209 (1968).

[4] S. Eidelman et al., Phys. Lett. B 592, 1 (2004).

[5] J.N. Bahcall and R. Davis, Science 191, 264 (1976); J.N. Bahcall, Neutrino

Astrophysics (Cambridge University Press, Cambridge, UK, 1989);

[6] J.N. Bahcall, Astrophys. J 467, 475 (1996).

[7] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968).

[8] B.T. Cleveland et al., Astrophys. J. 496, 505 (1998).

[9] M. Gell-Mann et al., in ”Supergravity”, Ed. by D. Freedman et al., North Holland

(1979); T. Yanagita, Prog. Theor. Phys. 64, 1103 (1980).

[10] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1958);

[11] B. Pontecorvo, Sov. Phys. JETP 7, 172 (1959); Z. Maki et al., Prog. Theor.

Phys. 28, 870 (1962).

[12] R.V. Wagoner et al., Astrophys. J. 148, 3 (1967);

[13] R.H. Dicke et al., Astrophys. J. 142, 414 (1965); A.A. Penzias and R. Wilson,

Astrophys. J. 142, 419 (1965).

134



BIBLIOGRAPHY 135

[14] M. Fukugita and T. Yanagida, ”Physics of Neutrinos and Applications to Astro-

physics”, Springer-Verlag, Berlin (2003).

[15] C. Giunti, Phys. Scripta 67, 29 (2003); M. Beuthe, Phys. Rept. 375, 105 (2003).

[16] L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

[17] S.P. Mikheev and A.Yu. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985).

[18] R.D. McKeown and P. Vogel, hep-ph/0402025.

[19] W. Hampel et al., Phys. Lett. B 447, 127 (1999).

[20] M. Altmann et al., Phys. Lett. B 490, 16 (2000).

[21] J.N. Abdurashitov et al., JETP 95, 181 (2002).

[22] J.N. Bahcall and C. Peña-Garay, New J. Phys. 6, 63 (2004).

[23] Updated from Figure 2 of [6] with numbers taken from [1] and [26], available

from http://www.sns.ias.edu/ jnb (2004).

[24] Y. Fukuda et al., Phys. Rev. Lett. 77, 1683 (1996).

[25] S. Fukuda et al., Phys. Lett. B 539, 179 (2002).

[26] S.N. Ahmed et al., Phys. Rev. Lett. 92, 181301 (2004).

[27] K.S. Hirata et al., Phys. Rev. Lett. 63, 16 (1989).

[28] H. Murayama, http://hitoshi.berkeley.edu/neutrino; based on M.B. Smy, Nucl.

Phys. B Proc. Suppl. 118, 25 (2003).

[29] K.S. Hirata et al., Phys. Lett. B 280, 146 (1992).

[30] R.A. Becker-Szendy et al., Phys. Rev. D 46, 3720 (1992).

[31] T.J. Haines et al., Phys. Rev. Lett. 57, 1986 (1986).

[32] W.W.M. Allison et al., Phys. Lett. B 391, 491 (1997).



136 BIBLIOGRAPHY

[33] Y. Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998).

[34] Y. Ashie et al., Phys. Rev. Lett. 93, 101801 (2004).

[35] C. Bemporad et al., Rev. Mod. Phys. 74, 297 (2002).

[36] H. Kwon et al., Phys. Rev. D 24, 1097 (1981).

[37] G. Zacek et al., Phys. Rev. D 34, 2621 (1986).

[38] A.I. Afonin et al., Sov. Phys. JETP 67, 213 (1988).

[39] G.S. Vidyakin et al., JETP Lett. 59, 390 (1994).

[40] B. Achkar et al., Nucl. Phys. B 434, 503 (1995).

[41] Z.D. Greenwood et al., Phys. Rev. D 53, 6054 (1996).

[42] B. Achkar et al., Phys. Lett. B 374, 243 (1996).

[43] F. Boehm et al., Phys. Rev. D 64, 112001 (2001).

[44] L. Miller, Ph.D. thesis, Stanford University (2000).

[45] M. Apollonio et al., Eur. Phys. J. C 27, 331 (2003).

[46] A. Aguilar et al., Phys. Rev. D 64, 112007 (2001).

[47] B. Armbruster et al., Phys. Rev. D. 65, 112001 (2002).

[48] A.O. Bazarko, Nucl. Phys. B Proc. Suppl. 117, 33 (2003).

[49] D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).

[50] J. Busenitz et al., ”Proposal for US Participation in KamLAND” (1999).

[51] International Nuclear Safety Center Web Page, http://www.insc.anl.gov (2004).

[52] P. Vogel and J.F. Beacom, Phys. Rev. D 60, 053003 (1999); radiative correction

from A. Kurylov, et al., Phys. Rev. C 67, 035502 (2003).



BIBLIOGRAPHY 137

[53] K. Eguchi et al., Phys. Rev. Lett. 92, 071301 (2004); K. McKinney, Ph.D. the-

sis, University of Alabama (2003); H. Ogawa, Ph.D. thesis, Tohoku University

(2003).

[54] R.S. Raghavan et al., Phys. Rev. Lett. 80, 635 (1998).

[55] K. Eguchi et al., Phys. Rev. Lett. 90, 021802 (2003); T. Iwamoto, Ph.D. thesis,

Tohoku University (2003); O. Tajima, Ph.D. thesis, Tohoku University (2003).

[56] T. Araki et al., hep-ex/0406035.

[57] F. Suekane et al., physics/0404071.

[58] J.B. Benziger et al., Nucl. Instrum. Methods Phys. Res. A 417, 278 (1998).

[59] H. Kume et al., Nucl. Instrum. Methods 205, 443 (1986).

[60] J.F. Beacom et al., Phys. Rev. D 66, 033001 (2002).

[61] A. Savitzky and M.J.E. Golay, Anal. Chem. 36, 1627 (1964).

[62] W.H. Press et al., ”Numerical Recipes in C: The Art of Scientific Computing”,

Cambridge U. Press, Cambridge (1992).

[63] J. Friedman, Proc. of the 1974 CERN School of Computing, Norway (1974).

[64] J.B. Birks, ”The Theory and Practice of Scintillation Counting”, Pergamon,

London (1964).

[65] I. Kawrakow and D.W.O. Rogers, ”The EGSnrc Code System: Monte Carlo Sim-

ulation of Electron and Photon Transport”, unpublished. The EGSnrc package

can be found at http://www.irs.inms.nrc.ca/inms/irs/EGSnrc/EGSnrc.html.

[66] F. James and M. Roos, Comp. Phys. Comm. 10, 343 (1975).

[67] P. Antonioli et al., Astropart. Phys. 7, 357 (1997).

[68] S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).



138 BIBLIOGRAPHY

[69] NuDat2.0, National Nuclear Data Center, Brookhaven National Laboratory,

available at http://www.nndc.bnl.gov/nudat2 (2004).

[70] T. Hagner et al., Astropart. Phys. 14, 33 (2000).

[71] V.I. Kopeikin et.al., Physics of Atomic Nuclei 64, 849 (2001).

[72] J. Detwiler et al., Phys. Rev. Lett. 89, 191802 (2002).

[73] J.M. Herndon, Proc. Nat. Acad. Sci. 100, 3047 (2003).

[74] F. Mantovani et al., Phys. Rev. D 69, 013001 (2004).

[75] G.V. Domogatskii, Sov. Astron. 28 (1984).

[76] C.E. Ortiz et al., Phys. Rev. Lett. 85, 2909 (2000).

[77] T.K. Gaisser et al., Phys. Rev. D 38, 85 (1988).

[78] K.K. Sekharan et al., Phys. Rev. 156, 1187 (1967); we actually

used an R-matrix evaluation of this measured cross section from

http://wwwndc.tokai.jaeri.go.jp/ftpnd/jendl/jendl-an-2003.html (2003).

[79] G.W. Kerr et al., Nucl. Phys. A 110, 637 (1968); R.B. Walton et al., Phys. Rev.

170, 1065 (1957).

[80] K. Hagiwara et al., Phys. Rev. D 66, 010001-220, Chapter 20 (2002).

[81] J.A. Messimore, Ph.D. Thesis, North Carolina State University (2003).

[82] T.R. England and B.F. Rider, ENDF-349, LA-UR-94-3106 (1994).

[83] Japan Atomic Industrial Forum, Inc. Web Page, http://www.jaif.or.jp

(2004); The Federation of Electric Power Companies of Japan Web Page,

http://www.fepc-atomic.jp (2004).

[84] Korea Hydro & Nuclear Power Company Web Page, http://www.khnp.co.kr

(2004).



BIBLIOGRAPHY 139

[85] A.A. Hahn et al., Phys. Lett. B 218, 365 (1989).

[86] K. Schreckenbach et al., Phys. Lett. B 160, 325 (1985).

[87] P. Vogel et al., Phys. Rev. C 24, 1543 (1981).

[88] G.L. Fogli et al., Phys. Rev. D 67, 073002 (2003).

[89] A. Stuart et al., ”Kendall’s Advanced Theory of Statistics”, Vol 2A, Oxford

University Press, New York (1999).

[90] M. Maltoni et al., New J. Phys. 6, 122 (2004).


